Question
Question: z<sub>1</sub>, z<sub>2</sub>, z<sub>3</sub> are the affixes of the vertices of a triangle having its...
z1, z2, z3 are the affixes of the vertices of a triangle having its circumcentre at the origin. If z is the affix of its orthocenter, then -
A
z1 + z2 + z3 – z = 0
B
z1 + z2 – z3 + z = 0
C
z1 – z2 + z3 + z = 0
D
– z1 + z2 + z3 + z = 0
Answer
z1 + z2 + z3 – z = 0
Explanation
Solution
Sol. We know from Co-ordinate Geometry that the
Points O, G, H are collinear and that G divides OH in the ratio 1 : 2.
Hence by ratio formula
31 S z1 = 1+21.z+2.0 = 3z
\ z1 + z2 + z3 – z = 0 Ž (1).