Question
Question: Z<sub>1</sub>¹ Z<sub>2</sub> are two points in an Argand plane. If a\|Z<sub>1</sub>\| = b\|Z<sub>2</...
Z1¹ Z2 are two points in an Argand plane. If a|Z1| = b|Z2|, then the point aZ1+bZ2aZ1−bZ2is –
A
In the I quadrant
B
In the III quadrant
C
On the real axis
D
On the imaginary axis
Answer
On the imaginary axis
Explanation
Solution
Sol. If Z1 = r1 eiq, Z2= r2ei(q + a), ar1 = br2 and
aZ1+bZ2aZ1−bZ2= eiθ+ei(θ+α)eiθ−ei(θ+α)= 1+eiα1−eiα
= e−iα/2+eiα/2e−iα/2−eiα/2
= 2cos2α−2isin2α= –i tan 2α
implying that the point is on the imaginary axis.