Question
Question: \(|z_{1} + z_{2}| = |z_{1}| + |z_{2}|\)is possible if...
∣z1+z2∣=∣z1∣+∣z2∣is possible if
A
z2=zˉ1
B
z2=z11
C
arg(z1)=arg(z2)
D
∣z1∣=∣z2∣
Answer
arg(z1)=arg(z2)
Explanation
Solution
Sol. Squaring both sides, we get
∣z1∣2+∣z2∣2+2∣z1∣∣z2∣cos(θ1−θ2)=∣z1∣2+∣z2∣2+2∣z1∣∣z2∣
⇒ 2∣z1∣∣z2∣cos(θ1−θ2)=2∣z1∣∣z2∣ ⇒ cos(θ1−θ2)=1
⇒ θ1−θ2=0o⇒ θ1=θ2
Hence arg (z1)= arg (z2)
Trick: Let z1 and z2 are the two sides of a triangle. By applying triangle inequality (z1+z2) is the third side. Equality holds only when θ1=θ2 i.e.,z1andz2 are parallel.