Question
Question: Given $|z_1|=1$, $|z_2-2|=3$ and $|z_3-5|=6$, find the maximum value of $|2z_1-3z_2-4z_3|$, where $...
Given ∣z1∣=1, ∣z2−2∣=3 and ∣z3−5∣=6, find the maximum value of ∣2z1−3z2−4z3∣, where z1,z2,z3 are complex numbers.
61
Solution
Let the given constraints be:
∣z1∣=1 ∣z2−2∣=3 ∣z3−5∣=6
We want to find the maximum value of ∣2z1−3z2−4z3∣. We can rewrite the expression by introducing the centers of the circles from the constraints:
∣2z1−3z2−4z3∣=∣2z1−3(z2−2+2)−4(z3−5+5)∣ =∣2z1−3(z2−2)−6−4(z3−5)−20∣ =∣2z1−3(z2−2)−4(z3−5)−26∣
Let w1=z1, w2=z2−2, and w3=z3−5. The given constraints become ∣w1∣=1, ∣w2∣=3, and ∣w3∣=6. We want to maximize ∣2w1−3w2−4w3−26∣.
Using the triangle inequality, ∣a+b+c+d∣≤∣a∣+∣b∣+∣c∣+∣d∣:
∣2w1−3w2−4w3−26∣≤∣2w1∣+∣−3w2∣+∣−4w3∣+∣−26∣ ∣2w1−3w2−4w3−26∣≤∣2∣∣w1∣+∣−3∣∣w2∣+∣−4∣∣w3∣+∣−26∣ ∣2w1−3w2−4w3−26∣≤2∣w1∣+3∣w2∣+4∣w3∣+26
Substitute the values of ∣w1∣, ∣w2∣, and ∣w3∣:
∣2w1−3w2−4w3−26∣≤2(1)+3(3)+4(6)+26 ∣2w1−3w2−4w3−26∣≤2+9+24+26 ∣2w1−3w2−4w3−26∣≤61
The maximum value is thus at most 61. For the equality to hold in the triangle inequality ∣a+b+c+d∣≤∣a∣+∣b∣+∣c∣+∣d∣, the complex numbers a,b,c,d must be collinear and have the same argument. In our case, the terms are a=2w1, b=−3w2, c=−4w3, and d=−26. Since d=−26 is a negative real number, its argument is arg(−26)=π.
For equality, we require arg(2w1)=π, arg(−3w2)=π, arg(−4w3)=π, and arg(−26)=π.
- arg(2w1)=π⟹arg(w1)=π. Since ∣w1∣=1, w1=1⋅eiπ=−1.
- arg(−3w2)=π⟹arg(−3)+arg(w2)=π⟹π+arg(w2)=π⟹arg(w2)=0. Since ∣w2∣=3, w2=3⋅ei0=3.
- arg(−4w3)=π⟹arg(−4)+arg(w3)=π⟹π+arg(w3)=π⟹arg(w3)=0. Since ∣w3∣=6, w3=6⋅ei0=6.
Now we find the corresponding values of z1,z2,z3:
w1=z1=−1. This satisfies ∣z1∣=1. w2=z2−2=3⟹z2=2+3=5. This satisfies ∣z2−2∣=∣5−2∣=3. w3=z3−5=6⟹z3=5+6=11. This satisfies ∣z3−5∣=∣11−5∣=6.
Since we found values of z1,z2,z3 that satisfy the given constraints and make the triangle inequality an equality, the maximum value is indeed 61.
Let's verify the value of the expression for these zi:
∣2z1−3z2−4z3∣=∣2(−1)−3(5)−4(11)∣=∣−2−15−44∣=∣−61∣=61.
Therefore, the maximum value is 61.