Solveeit Logo

Question

Question: Given $|z_1|=1$, $|z_2-2|=3$ and $|z_3-5|=6$, find the maximum value of $|2z_1-3z_2-4z_3|$, where $...

Given z1=1|z_1|=1, z22=3|z_2-2|=3 and z35=6|z_3-5|=6, find the maximum value of 2z13z24z3|2z_1-3z_2-4z_3|, where z1,z2,z3z_1, z_2, z_3 are complex numbers.

Answer

61

Explanation

Solution

Let the given constraints be:

z1=1|z_1|=1 z22=3|z_2-2|=3 z35=6|z_3-5|=6

We want to find the maximum value of 2z13z24z3|2z_1-3z_2-4z_3|. We can rewrite the expression by introducing the centers of the circles from the constraints:

2z13z24z3=2z13(z22+2)4(z35+5)|2z_1-3z_2-4z_3| = |2z_1 - 3(z_2-2+2) - 4(z_3-5+5)| =2z13(z22)64(z35)20= |2z_1 - 3(z_2-2) - 6 - 4(z_3-5) - 20| =2z13(z22)4(z35)26= |2z_1 - 3(z_2-2) - 4(z_3-5) - 26|

Let w1=z1w_1 = z_1, w2=z22w_2 = z_2-2, and w3=z35w_3 = z_3-5. The given constraints become w1=1|w_1|=1, w2=3|w_2|=3, and w3=6|w_3|=6. We want to maximize 2w13w24w326|2w_1 - 3w_2 - 4w_3 - 26|.

Using the triangle inequality, a+b+c+da+b+c+d|a+b+c+d| \le |a|+|b|+|c|+|d|:

2w13w24w3262w1+3w2+4w3+26|2w_1 - 3w_2 - 4w_3 - 26| \le |2w_1| + |-3w_2| + |-4w_3| + |-26| 2w13w24w3262w1+3w2+4w3+26|2w_1 - 3w_2 - 4w_3 - 26| \le |2||w_1| + |-3||w_2| + |-4||w_3| + |-26| 2w13w24w3262w1+3w2+4w3+26|2w_1 - 3w_2 - 4w_3 - 26| \le 2|w_1| + 3|w_2| + 4|w_3| + 26

Substitute the values of w1|w_1|, w2|w_2|, and w3|w_3|:

2w13w24w3262(1)+3(3)+4(6)+26|2w_1 - 3w_2 - 4w_3 - 26| \le 2(1) + 3(3) + 4(6) + 26 2w13w24w3262+9+24+26|2w_1 - 3w_2 - 4w_3 - 26| \le 2 + 9 + 24 + 26 2w13w24w32661|2w_1 - 3w_2 - 4w_3 - 26| \le 61

The maximum value is thus at most 61. For the equality to hold in the triangle inequality a+b+c+da+b+c+d|a+b+c+d| \le |a|+|b|+|c|+|d|, the complex numbers a,b,c,da, b, c, d must be collinear and have the same argument. In our case, the terms are a=2w1a = 2w_1, b=3w2b = -3w_2, c=4w3c = -4w_3, and d=26d = -26. Since d=26d = -26 is a negative real number, its argument is arg(26)=π\arg(-26) = \pi.

For equality, we require arg(2w1)=π\arg(2w_1) = \pi, arg(3w2)=π\arg(-3w_2) = \pi, arg(4w3)=π\arg(-4w_3) = \pi, and arg(26)=π\arg(-26) = \pi.

  1. arg(2w1)=π    arg(w1)=π\arg(2w_1) = \pi \implies \arg(w_1) = \pi. Since w1=1|w_1|=1, w1=1eiπ=1w_1 = 1 \cdot e^{i\pi} = -1.
  2. arg(3w2)=π    arg(3)+arg(w2)=π    π+arg(w2)=π    arg(w2)=0\arg(-3w_2) = \pi \implies \arg(-3) + \arg(w_2) = \pi \implies \pi + \arg(w_2) = \pi \implies \arg(w_2) = 0. Since w2=3|w_2|=3, w2=3ei0=3w_2 = 3 \cdot e^{i0} = 3.
  3. arg(4w3)=π    arg(4)+arg(w3)=π    π+arg(w3)=π    arg(w3)=0\arg(-4w_3) = \pi \implies \arg(-4) + \arg(w_3) = \pi \implies \pi + \arg(w_3) = \pi \implies \arg(w_3) = 0. Since w3=6|w_3|=6, w3=6ei0=6w_3 = 6 \cdot e^{i0} = 6.

Now we find the corresponding values of z1,z2,z3z_1, z_2, z_3:

w1=z1=1w_1 = z_1 = -1. This satisfies z1=1|z_1|=1. w2=z22=3    z2=2+3=5w_2 = z_2-2 = 3 \implies z_2 = 2+3 = 5. This satisfies z22=52=3|z_2-2|=|5-2|=3. w3=z35=6    z3=5+6=11w_3 = z_3-5 = 6 \implies z_3 = 5+6 = 11. This satisfies z35=115=6|z_3-5|=|11-5|=6.

Since we found values of z1,z2,z3z_1, z_2, z_3 that satisfy the given constraints and make the triangle inequality an equality, the maximum value is indeed 61.

Let's verify the value of the expression for these ziz_i:

2z13z24z3=2(1)3(5)4(11)=21544=61=61|2z_1 - 3z_2 - 4z_3| = |2(-1) - 3(5) - 4(11)| = |-2 - 15 - 44| = |-61| = 61.

Therefore, the maximum value is 61.