Solveeit Logo

Question

Mathematics Question on Linear Programming Problem

Z=7x+yZ = 7x + y, subject to 5x+y5,x+y3,x0,y05x + y \ge 5, x + y \ge 3, x \ge 0, y \ge 0. The minimum value of Z occurs at

A

(3,0)(3, 0)

B

(12,52)\left(\frac{1}{2}, \frac{5}{2}\right)

C

(7,0)(7, 0)

D

(0,5)(0, 5)

Answer

(0,5)(0, 5)

Explanation

Solution

We have, maximize Z=7x+yZ = 7x + y, Subject to : 5x+y5,x+y3,x,y05x + y \ge 5, x + y \ge 3, x, y \ge 0. Let 1:5x+y=5\ell_{1} : 5x + y = 5 2:x+y=3\ell _{2} : x + y = 3 3:x=0\ell _{3} : x = 0 and 4:y=0\ell _{4} : y = 0 Shaded portion is the feasible region, Where A(3,0),B(12,52),C(0,5)A\left(3, 0\right), \,B\left(\frac{1}{2}, \frac{5}{2}\right), C\left(0, 5\right) Solving 1\ell _{1} and 2\ell _{2}, we get B(12,52)B\left(\frac{1}{2}, \frac{5}{2}\right) Now maximize Z=7x+yZ = 7x + y Z at A(3,0)=7(3)+0=21A\left(3, 0\right) = 7\left(3\right) + 0 = 21 Z at B(12,52)=7(12)+52=6B\left(\frac{1}{2}, \frac{5}{2}\right) = 7\left(\frac{1}{2}\right) + \frac{5}{2} = 6 Z at C(0,5)=7(0)+5=5C\left(0, 5\right) = 7\left(0\right) + 5 = 5 Thus Z, is minimized at C(0,5)C\left(0, 5\right) and its minimum value is 55