Solveeit Logo

Question

Question: y(x,t)=0.6/((2x-5t)^2+5) is a wave pulse. find itsmax displacement(amplitude)?...

y(x,t)=0.6/((2x-5t)^2+5) is a wave pulse. find itsmax displacement(amplitude)?

Answer

0.12

Explanation

Solution

The given wave pulse is:

y(x,t)=0.6(2x5t)2+5.y(x,t) = \frac{0.6}{(2x-5t)^2 + 5}.

The maximum displacement (amplitude) will occur when the denominator is minimum. Since (2x5t)20(2x-5t)^2 \geq 0 for all xx and tt, the minimum value of the denominator is when:

(2x5t)2=0(2x5t)2+5=5.(2x-5t)^2 = 0 \quad \Longrightarrow \quad (2x-5t)^2 + 5 = 5.

Thus, the maximum displacement is:

ymax=0.65=0.12.y_{\text{max}} = \frac{0.6}{5} = 0.12.