Question
Question: y=tan-1(tanθ−tanπ41+tanθtanπ4)...
y=tan-1(tanθ−tanπ41+tanθtanπ4)
Answer
y={tan−1X−4πtan−1X+43πif X>−1if X≤−1
Explanation
Solution
The given expression for y is simplified using the tangent subtraction formula: y=tan−1(1+tanθtan4πtanθ−tan4π)=tan−1(tan(θ−4π)) Assuming X=tanθ, we have θ=tan−1X, where θ∈(−2π,2π). Then y=tan−1(tan(tan−1X−4π)). Let Z=tan−1X−4π. The range of Z is (−43π,4π). Using tan−1(tanZ)=Z−nπ, where Z−nπ∈(−2π,2π): If X>−1, then tan−1X>−4π, so Z∈(−4π,4π). Here n=0, so y=Z=tan−1X−4π. If X≤−1, then tan−1X≤−4π, so Z∈(−43π,−4π]. Here n=−1, so y=Z+π=tan−1X−4π+π=tan−1X+43π.