Solveeit Logo

Question

Question: y=tan-1(tanθ−tanπ41+tanθtanπ4)...

y=tan-1(tanθ−tanπ41+tanθtanπ4)

Answer

y={tan1Xπ4if X>1tan1X+3π4if X1y = \begin{cases} \tan^{-1} X - \frac{\pi}{4} & \text{if } X > -1 \\ \tan^{-1} X + \frac{3\pi}{4} & \text{if } X \le -1 \end{cases}

Explanation

Solution

The given expression for yy is simplified using the tangent subtraction formula: y=tan1(tanθtanπ41+tanθtanπ4)=tan1(tan(θπ4))y = \tan^{-1}\left(\frac{\tan \theta - \tan \frac{\pi}{4}}{1 + \tan \theta \tan \frac{\pi}{4}}\right) = \tan^{-1}\left(\tan\left(\theta - \frac{\pi}{4}\right)\right) Assuming X=tanθX = \tan \theta, we have θ=tan1X\theta = \tan^{-1} X, where θ(π2,π2)\theta \in (-\frac{\pi}{2}, \frac{\pi}{2}). Then y=tan1(tan(tan1Xπ4))y = \tan^{-1}\left(\tan\left(\tan^{-1} X - \frac{\pi}{4}\right)\right). Let Z=tan1Xπ4Z = \tan^{-1} X - \frac{\pi}{4}. The range of ZZ is (3π4,π4)(-\frac{3\pi}{4}, \frac{\pi}{4}). Using tan1(tanZ)=Znπ\tan^{-1}(\tan Z) = Z - n\pi, where Znπ(π2,π2)Z - n\pi \in (-\frac{\pi}{2}, \frac{\pi}{2}): If X>1X > -1, then tan1X>π4\tan^{-1} X > -\frac{\pi}{4}, so Z(π4,π4)Z \in (-\frac{\pi}{4}, \frac{\pi}{4}). Here n=0n=0, so y=Z=tan1Xπ4y = Z = \tan^{-1} X - \frac{\pi}{4}. If X1X \le -1, then tan1Xπ4\tan^{-1} X \le -\frac{\pi}{4}, so Z(3π4,π4]Z \in (-\frac{3\pi}{4}, -\frac{\pi}{4}]. Here n=1n=-1, so y=Z+π=tan1Xπ4+π=tan1X+3π4y = Z + \pi = \tan^{-1} X - \frac{\pi}{4} + \pi = \tan^{-1} X + \frac{3\pi}{4}.