Solveeit Logo

Question

Question: $y=tan^{-1}(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}})$ ...

y=tan1(1+x1x1+x1x)y=tan^{-1}(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}})

Answer

dydx=0\frac{dy}{dx}=0.

Explanation

Solution

Solution:

We are given

y=tan1(1+x1x1+x1x).y=\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right).

Note that for all xx (except at points where the expression is undefined),

1+x1x1+x1x=1.\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}=1.

Thus,

y=tan1(1)=π4,y=\tan^{-1}(1)=\frac{\pi}{4},

which is a constant. Hence,

dydx=0.\frac{dy}{dx}=0.

Explanation (Minimal):

Since the numerator and denominator are identical (except where undefined), the inner expression simplifies to 1. So, y=tan1(1)=π4y=\tan^{-1}(1)=\frac{\pi}{4} (a constant), and its derivative is 0.