Solveeit Logo

Question

Question: Young's modulus of rubber is \(10 ^ { 4 } \mathrm {~N} / \mathrm { m } ^ { 2 }\) and area of cross-s...

Young's modulus of rubber is 104 N/m210 ^ { 4 } \mathrm {~N} / \mathrm { m } ^ { 2 } and area of cross-section is 2 cm22 \mathrm {~cm} ^ { 2 }. If force of 2×1052 \times 10 ^ { 5 }dynes is applied along its length, then its initial length l becomes

A

3L

B

4L

C

2L

D

None of the above

Answer

2L

Explanation

Solution

Y=104 N/m2,A=2×104 m2,F=2×105Y = 10 ^ { 4 } \mathrm {~N} / \mathrm { m } ^ { 2 } , A = 2 \times 10 ^ { - 4 } \mathrm {~m} ^ { 2 } , F = 2 \times 10 ^ { 5 } dyne =2 N= 2 \mathrm {~N}

l=FLAY=2×L2×104×104=Ll = \frac { F L } { A Y } = \frac { 2 \times L } { 2 \times 10 ^ { - 4 } \times 10 ^ { 4 } } = L

∴ Final length = initial length + increment = 2L