Solveeit Logo

Question

Question: You measure two quantities as \(A = 1.0m \pm 0.2m,B = 2.0m \pm 0.2m.\) We should report correct val...

You measure two quantities as

A=1.0m±0.2m,B=2.0m±0.2m.A = 1.0m \pm 0.2m,B = 2.0m \pm 0.2m. We should report correct value for AB\sqrt{AB}as

A

1.4m±0.4m1.4m \pm 0.4m

B

1.41m±0.15m1.41m \pm 0.15m

C

1.4m±0.3m1.4m \pm 0.3m

D

1.4m±0.2m1.4m \pm 0.2m

Answer

1.4m±0.2m1.4m \pm 0.2m

Explanation

Solution

Here, A=1.0m±0.2m,B=2.0m±0.2mA = 1.0m \pm 0.2m,B = 2.0m \pm 0.2m

AB=(1.0 m)(2.0 m)=2.0 m2\mathrm { AB } = ( 1.0 \mathrm {~m} ) ( 2.0 \mathrm {~m} ) = 2.0 \mathrm {~m} ^ { 2 } AB=2.0m=1.414cm\sqrt{AB} = \sqrt{2.0}m = 1.414cm

Rounding off to two significant figures, we get

AB=1.4 cm\sqrt { \mathrm { AB } } = 1.4 \mathrm {~cm} AABAB=12(ΔAA+ΔBB)=12(0.21.0+0.22.0)=0.32ΔAB=0.32×AB=0.32×1.414=0.212m\frac{A\sqrt{AB}}{\sqrt{AB}} = \frac{1}{2}\left( \frac{\Delta A}{A} + \frac{\Delta B}{B} \right) = \frac{1}{2}\left( \frac{0.2}{1.0} + \frac{0.2}{2.0} \right) = \frac{0.3}{2}\Delta\sqrt{AB} = \frac{0.3}{2} \times \sqrt{AB} = \frac{0.3}{2} \times 1.414 = 0.212mRounding off to one significant figures , we get

ΔAB=0.2m\Delta\sqrt{AB} = 0.2m

The correct value for ABis1.4m±0.2m\sqrt{AB}is1.4m \pm 0.2m