Solveeit Logo

Question

Question: You may not know integration. But using dimensional analysis you can check or prove results. In the ...

You may not know integration. But using dimensional analysis you can check or prove results. In the integral dx(2axx2)1/2= an sin-1\int_{}^{}\frac{dx}{(2ax - x^{2})^{1/2}} = \text{ }\text{a}^{n}\text{ si}\text{n}^{\text{-1}} (xa1)\left( \frac{x}{a} - 1 \right)the value of n should be–

A

1

B

-1

C

0

D

½

Answer

0

Explanation

Solution

dx(2axx2)\int_{}^{}\frac{dx}{(2ax - x^{2})} = ansin–1 [xa1]\left\lbrack \frac{x}{a} - 1 \right\rbrack.

From R.H.S. dimension of [a] = [L],

Since [xa]\left\lbrack \frac{x}{a} \right\rbrack should be dimensionless.

Dimension L.H.S. : [L][L]= L0\frac{\lbrack L\rbrack}{\lbrack L\rbrack} = \text{ }\text{L}^{0}

Since dimension of [2ax - x2]1/2 = [L]\lbrack\text{2ax - }\text{x}^{2}\rbrack^{\text{1/2}}\ = \ \lbrack L\rbrack

& dimension of [dx] = L

Equating dimensions of L.H.S. & R.H.S. L0 = Ln L^{0}\ = \text{ Ln }

n = 0

L0 = Ln L^{0}\ = \text{ Ln }

n = 0