Solveeit Logo

Question

Question: You are in an airplane at an altitude of 10,000 m. The pupil of your eye is about 3.0 mm in diameter...

You are in an airplane at an altitude of 10,000 m. The pupil of your eye is about 3.0 mm in diameter and the wavelength of light λ\lambda = 550 nm. If you look down at the ground, the minimum separation s between objects that you could distinguish is :

A

1.24 m

B

2.24 m

C

9.92 m

D

4.48 m

Answer

2.24 m

Explanation

Solution

The minimum separation ss between two objects that can be distinguished is given by the formula based on the Rayleigh criterion for a circular aperture:

s=Rθs = R \theta

where RR is the distance to the objects (altitude of the airplane) and θ\theta is the angular resolution of the eye. The angular resolution is given by:

θ=1.22λd\theta = 1.22 \frac{\lambda}{d}

where λ\lambda is the wavelength of light and dd is the diameter of the aperture (pupil).

Given values:

  • Altitude R=10,000R = 10,000 m
  • Pupil diameter d=3.0d = 3.0 mm =3.0×103= 3.0 \times 10^{-3} m
  • Wavelength λ=550\lambda = 550 nm =550×109= 550 \times 10^{-9} m

First, calculate the angular resolution θ\theta:

θ=1.22×550×109 m3.0×103 m\theta = 1.22 \times \frac{550 \times 10^{-9} \text{ m}}{3.0 \times 10^{-3} \text{ m}}

θ=1.22×5503.0×106 radians\theta = 1.22 \times \frac{550}{3.0} \times 10^{-6} \text{ radians}

Now, calculate the minimum separation ss:

s=Rθs = R \theta

s=10000 m×(1.22×5503.0×106) radianss = 10000 \text{ m} \times \left( 1.22 \times \frac{550}{3.0} \times 10^{-6} \right) \text{ radians}

s=104×1.22×5503.0×106 ms = 10^4 \times 1.22 \times \frac{550}{3.0} \times 10^{-6} \text{ m}

s=1.22×5503.0×1046 ms = 1.22 \times \frac{550}{3.0} \times 10^{4-6} \text{ m}

s=1.22×5503.0×102 ms = 1.22 \times \frac{550}{3.0} \times 10^{-2} \text{ m}

s=1.22×550300 ms = \frac{1.22 \times 550}{300} \text{ m}

s=671300 ms = \frac{671}{300} \text{ m}

s2.2367 ms \approx 2.2367 \text{ m}

Rounding to two decimal places, the minimum separation is approximately 2.24 m.