Solveeit Logo

Question

Mathematics Question on applications of integrals

You are given a curve, y=ln(x+e)y = ln (x + e) . What will be the area enclosed between this curve and the coordinate axes?

A

11

B

00

C

2e2e

D

e1e-1

Answer

11

Explanation

Solution

Given curve, y=y= ln (x+e)(x+e)
Curve cuts xx-axis at (1e,0)(1-e, 0) and y-axis at (0,1)(0, 1)
\therefore Required area =1e01ln(x+e)dx=\int\limits_{1-e}^{0}1\cdot ln \left(x+e\right)dx
=[ln(x+e)x]1e01e01x+exdx=\left[ln \left(x+e\right)\cdot x\right]_{1-e}^{0}-\int_{1-e}^{0}\frac{1}{x+e}\cdot x\,dx
=01e0(x+ex+eex+e)dx=0- \int\limits_{1-e}^{0} \left(\frac{x+e}{x+e}-\frac{e}{x+e}\right)dx
=1e01dx+1e0ex+edx=-\int\limits_{1-e}^{0}1 dx +\int\limits_{1-e}^{0}\frac{e}{x+e}dx

=[x]1e0+[elog(x+e)]1e0=\left[-x\right]_{1-e}^{0}+\left[e\,log\left(x+e\right)\right]_{1-e}^{0}
=0+1e+elogeelog(1e+e)=0+1-e+e\,log\, e-e\, log \left(1-e+e\right)
=1e+e=1=1-e+e=1