Solveeit Logo

Question

Question: $y=\frac{(e^{sinx}-1)^4+((cosx-1)e^{sinx})^3+(e^x+e^{-x})^3+x^3+2x^2+4}{e^x}$ $y''(0)=?$...

y=(esinx1)4+((cosx1)esinx)3+(ex+ex)3+x3+2x2+4exy=\frac{(e^{sinx}-1)^4+((cosx-1)e^{sinx})^3+(e^x+e^{-x})^3+x^3+2x^2+4}{e^x}

y(0)=?y''(0)=?

Answer

40

Explanation

Solution

The function is given by y(x)=(esinx1)4+((cosx1)esinx)3+(ex+ex)3+x3+2x2+4exy(x) = \frac{(e^{\sin x}-1)^4+((cosx-1)e^{\sin x})^3+(e^x+e^{-x})^3+x^3+2x^2+4}{e^x}.

Let the numerator be N(x)=(esinx1)4+((cosx1)esinx)3+(ex+ex)3+x3+2x2+4N(x) = (e^{\sin x}-1)^4+((cosx-1)e^{\sin x})^3+(e^x+e^{-x})^3+x^3+2x^2+4. Then y(x)=N(x)exy(x) = N(x)e^{-x}.

To find y(0)y''(0), we first find the derivatives of y(x)y(x): y(x)=N(x)exN(x)ex=(N(x)N(x))exy'(x) = N'(x)e^{-x} - N(x)e^{-x} = (N'(x) - N(x))e^{-x} y(x)=(N(x)N(x))ex(N(x)N(x))ex=(N(x)2N(x)+N(x))exy''(x) = (N''(x) - N'(x))e^{-x} - (N'(x) - N(x))e^{-x} = (N''(x) - 2N'(x) + N(x))e^{-x} At x=0x=0, y(0)=(N(0)2N(0)+N(0))e0=N(0)2N(0)+N(0)y''(0) = (N''(0) - 2N'(0) + N(0))e^{-0} = N''(0) - 2N'(0) + N(0).

Let's evaluate N(0)N(0), N(0)N'(0), and N(0)N''(0). N(x)=(esinx1)4+((cosx1)esinx)3+(ex+ex)3+x3+2x2+4N(x) = (e^{\sin x}-1)^4+((cosx-1)e^{\sin x})^3+(e^x+e^{-x})^3+x^3+2x^2+4 At x=0x=0: sin0=0\sin 0 = 0, cos0=1\cos 0 = 1. N(0)=(e01)4+((11)e0)3+(e0+e0)3+03+2(0)2+4N(0) = (e^0-1)^4 + ((1-1)e^0)^3 + (e^0+e^{-0})^3 + 0^3 + 2(0)^2 + 4 N(0)=(11)4+(01)3+(1+1)3+0+0+4N(0) = (1-1)^4 + (0 \cdot 1)^3 + (1+1)^3 + 0 + 0 + 4 N(0)=04+03+23+4=0+0+8+4=12N(0) = 0^4 + 0^3 + 2^3 + 4 = 0 + 0 + 8 + 4 = 12.

To find N(0)N'(0) and N(0)N''(0), we can use Taylor series expansions of the terms around x=0x=0. Recall the series expansions: sinx=xx36+O(x5)\sin x = x - \frac{x^3}{6} + O(x^5) cosx=1x22+x424+O(x6)\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + O(x^6) eu=1+u+u22+u36+u424+...e^u = 1 + u + \frac{u^2}{2} + \frac{u^3}{6} + \frac{u^4}{24} + ...

Term 1: T1=(esinx1)4T_1 = (e^{\sin x}-1)^4 esinx=1+sinx+sin2x2+sin3x6+sin4x24+O(x5)e^{\sin x} = 1 + \sin x + \frac{\sin^2 x}{2} + \frac{\sin^3 x}{6} + \frac{\sin^4 x}{24} + O(x^5) =1+(xx36)+(xx36)22+(x)36+(x)424+O(x5)= 1 + (x - \frac{x^3}{6}) + \frac{(x - \frac{x^3}{6})^2}{2} + \frac{(x)^3}{6} + \frac{(x)^4}{24} + O(x^5) =1+xx36+x2x4/3+O(x6)2+x36+x424+O(x5)= 1 + x - \frac{x^3}{6} + \frac{x^2 - x^4/3 + O(x^6)}{2} + \frac{x^3}{6} + \frac{x^4}{24} + O(x^5) =1+x+x22+x3(16+16)+x4(16+124)+O(x5)= 1 + x + \frac{x^2}{2} + x^3(-\frac{1}{6}+\frac{1}{6}) + x^4(-\frac{1}{6}+\frac{1}{24}) + O(x^5) =1+x+x22x48+O(x5)= 1 + x + \frac{x^2}{2} - \frac{x^4}{8} + O(x^5) esinx1=x+x22x48+O(x5)e^{\sin x}-1 = x + \frac{x^2}{2} - \frac{x^4}{8} + O(x^5) T1=(esinx1)4=(x+x22x48+O(x5))4=x4+4x3(x22)+O(x6)=x4+2x5+O(x6)T_1 = (e^{\sin x}-1)^4 = (x + \frac{x^2}{2} - \frac{x^4}{8} + O(x^5))^4 = x^4 + 4x^3(\frac{x^2}{2}) + O(x^6) = x^4 + 2x^5 + O(x^6). T1(x)=c4x4+c5x5+...T_1(x) = c_4 x^4 + c_5 x^5 + ... T1(x)=4c4x3+5c5x4+...    T1(0)=0T_1'(x) = 4c_4 x^3 + 5c_5 x^4 + ... \implies T_1'(0) = 0. T1(x)=12c4x2+20c5x3+...    T1(0)=0T_1''(x) = 12c_4 x^2 + 20c_5 x^3 + ... \implies T_1''(0) = 0.

Term 2: T2=((cosx1)esinx)3T_2 = ((cosx-1)e^{\sin x})^3 cosx1=x22+x424+O(x6)\cos x - 1 = -\frac{x^2}{2} + \frac{x^4}{24} + O(x^6) esinx=1+x+x22+O(x3)e^{\sin x} = 1 + x + \frac{x^2}{2} + O(x^3) (cosx1)esinx=(x22+O(x4))(1+x+O(x2))=x22x32+O(x4)(cosx-1)e^{\sin x} = (-\frac{x^2}{2} + O(x^4))(1 + x + O(x^2)) = -\frac{x^2}{2} - \frac{x^3}{2} + O(x^4). T2=((cosx1)esinx)3=(x22x32+O(x4))3=(x22)3+3(x22)2(x32)+O(x8)T_2 = ((cosx-1)e^{\sin x})^3 = (-\frac{x^2}{2} - \frac{x^3}{2} + O(x^4))^3 = (-\frac{x^2}{2})^3 + 3(-\frac{x^2}{2})^2(-\frac{x^3}{2}) + O(x^8) =x683x78+O(x8)= -\frac{x^6}{8} - \frac{3x^7}{8} + O(x^8). T2(x)=d6x6+d7x7+...T_2(x) = d_6 x^6 + d_7 x^7 + ... T2(x)=6d6x5+7d7x6+...    T2(0)=0T_2'(x) = 6d_6 x^5 + 7d_7 x^6 + ... \implies T_2'(0) = 0. T2(x)=30d6x4+42d7x5+...    T2(0)=0T_2''(x) = 30d_6 x^4 + 42d_7 x^5 + ... \implies T_2''(0) = 0.

Term 3: T3=(ex+ex)3T_3 = (e^x+e^{-x})^3 ex=1+x+x22+x36+x424+O(x5)e^x = 1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24} + O(x^5) ex=1x+x22x36+x424+O(x5)e^{-x} = 1-x+\frac{x^2}{2}-\frac{x^3}{6}+\frac{x^4}{24} + O(x^5) ex+ex=2+x2+x412+O(x6)e^x+e^{-x} = 2 + x^2 + \frac{x^4}{12} + O(x^6) T3=(2+x2+x412+O(x6))3T_3 = (2 + x^2 + \frac{x^4}{12} + O(x^6))^3 =23+322(x2+x412+O(x6))+32(x2+O(x4))2+(x2+O(x4))3= 2^3 + 3 \cdot 2^2 (x^2 + \frac{x^4}{12} + O(x^6)) + 3 \cdot 2 (x^2 + O(x^4))^2 + (x^2 + O(x^4))^3 =8+12(x2+x412+O(x6))+6(x4+O(x6))+O(x6)= 8 + 12(x^2 + \frac{x^4}{12} + O(x^6)) + 6(x^4 + O(x^6)) + O(x^6) =8+12x2+x4+6x4+O(x6)=8+12x2+7x4+O(x6)= 8 + 12x^2 + x^4 + 6x^4 + O(x^6) = 8 + 12x^2 + 7x^4 + O(x^6). T3(x)=8+12x2+7x4+...T_3(x) = 8 + 12x^2 + 7x^4 + ... T3(x)=24x+28x3+...    T3(0)=0T_3'(x) = 24x + 28x^3 + ... \implies T_3'(0) = 0. T3(x)=24+84x2+...    T3(0)=24T_3''(x) = 24 + 84x^2 + ... \implies T_3''(0) = 24.

Term 4: T4=x3+2x2+4T_4 = x^3+2x^2+4 T4(x)=3x2+4x    T4(0)=0T_4'(x) = 3x^2+4x \implies T_4'(0) = 0. T4(x)=6x+4    T4(0)=4T_4''(x) = 6x+4 \implies T_4''(0) = 4.

N(x)=T1+T2+T3+T4N(x) = T_1 + T_2 + T_3 + T_4. N(x)=T1+T2+T3+T4N'(x) = T_1' + T_2' + T_3' + T_4'. N(0)=T1(0)+T2(0)+T3(0)+T4(0)=0+0+0+0=0N'(0) = T_1'(0) + T_2'(0) + T_3'(0) + T_4'(0) = 0 + 0 + 0 + 0 = 0.

N(x)=T1+T2+T3+T4N''(x) = T_1'' + T_2'' + T_3'' + T_4''. N(0)=T1(0)+T2(0)+T3(0)+T4(0)=0+0+24+4=28N''(0) = T_1''(0) + T_2''(0) + T_3''(0) + T_4''(0) = 0 + 0 + 24 + 4 = 28.

Finally, y(0)=N(0)2N(0)+N(0)y''(0) = N''(0) - 2N'(0) + N(0). y(0)=282(0)+12=28+12=40y''(0) = 28 - 2(0) + 12 = 28 + 12 = 40.

The final answer is 40\boxed{40}.

Explanation of the solution:

  1. Define the numerator of the function as N(x)N(x) and write y(x)=N(x)exy(x) = N(x)e^{-x}.
  2. Calculate the second derivative y(x)y''(x) using the product rule. Evaluate y(0)y''(0) in terms of N(0)N(0), N(0)N'(0), and N(0)N''(0).
  3. Evaluate N(0)N(0) by substituting x=0x=0 into the expression for N(x)N(x).
  4. Evaluate N(0)N'(0) and N(0)N''(0) by finding the first and second derivatives of each term in N(x)N(x) and evaluating them at x=0x=0. Taylor series expansions around x=0x=0 are used to efficiently determine the values of the derivatives at x=0x=0. For terms starting with powers of xx greater than 1, the first and second derivatives at x=0x=0 are zero.
  5. Substitute the calculated values of N(0)N(0), N(0)N'(0), and N(0)N''(0) into the expression for y(0)y''(0).

The final answer is 40\boxed{40}.