Solveeit Logo

Question

Question: ydx + (x-y^2)dy=0...

ydx + (x-y^2)dy=0

Answer

xy = \frac{y^3}{3} + C

Explanation

Solution

The given differential equation ydx+(xy2)dy=0ydx + (x-y^2)dy=0 is a first-order differential equation. It can be transformed into a linear differential equation in xx with yy as the independent variable.

  1. Rearrange the equation to isolate dxdy\frac{dx}{dy}: ydx=(xy2)dyydx = -(x-y^2)dy Divide by dydy: ydxdy=(xy2)y\frac{dx}{dy} = -(x-y^2) dxdy=xy+y2y\frac{dx}{dy} = -\frac{x}{y} + \frac{y^2}{y} dxdy=xy+y\frac{dx}{dy} = -\frac{x}{y} + y

  2. Rewrite in the standard linear form dxdy+P(y)x=Q(y)\frac{dx}{dy} + P(y)x = Q(y): dxdy+1yx=y\frac{dx}{dy} + \frac{1}{y}x = y Here, P(y)=1yP(y) = \frac{1}{y} and Q(y)=yQ(y) = y.

  3. Calculate the integrating factor (IF): IF=eP(y)dy=e1ydy=elogy=yIF = e^{\int P(y) dy} = e^{\int \frac{1}{y} dy} = e^{\log|y|} = |y|. Assuming y>0y > 0, the integrating factor is yy.

  4. Apply the general solution formula for linear equations: x(IF)=Q(y)(IF)dy+Cx \cdot (\text{IF}) = \int Q(y) \cdot (\text{IF}) \, dy + C. xy=yydy+Cx \cdot y = \int y \cdot y \, dy + C

  5. Integrate to find the solution: xy=y2dy+Cxy = \int y^2 \, dy + C xy=y33+Cxy = \frac{y^3}{3} + C