Question
Question: $y=4^{\log_2 \sin x + 9^{\log_3 \cos x}}$ ...
y=4log2sinx+9log3cosx

Answer
dxdy=2sinxcosx⋅4cos2x[1−(sinx)2ln4].
Explanation
Solution
We start with
y=4log2sinx+9log3cosx.Using the property au+v=au⋅av we write
y=4log2sinx⋅49log3cosx.-
For the first factor, use the identity
alogbc=clogba:
4log2sinx=(sinx)log24=(sinx)2, since log24=2. -
For the second factor, first simplify the exponent
9log3cosx=(cosx)log39=(cosx)2, since log39=2. Then, 49log3cosx=4(cosx)2.
Thus,
y=(sinx)2⋅4cos2x.Write 4cos2x=ecos2xln4. Now differentiate using the product rule:
Let
u=sin2x,u′=2sinxcosx, v=4cos2x=ecos2xln4,sov′=4cos2xln4⋅dxd(cos2x).Differentiate cos2x using the chain rule:
dxd(cos2x)=−2cosxsinx.Thus,
v′=−2ln4sinxcosx⋅4cos2x.Applying the product rule:
dxdy=u′v+uv′=[2sinxcosx⋅4cos2x]+[(sinx)2⋅(−2ln4sinxcosx⋅4cos2x)].Factor common terms 2sinxcosx⋅4cos2x:
dxdy=2sinxcosx⋅4cos2x[1−(sinx)2ln4].