Solveeit Logo

Question

Question: $y=4^{\log_2 \sin x + 9^{\log_3 \cos x}}$ ...

y=4log2sinx+9log3cosxy=4^{\log_2 \sin x + 9^{\log_3 \cos x}}

Answer

dydx=2sinxcosx4cos2x[1(sinx)2ln4]\frac{dy}{dx}=2\sin x\cos x\cdot 4^{\cos^2 x}\Bigl[1- (\sin x)^2\ln 4\Bigr].

Explanation

Solution

We start with

y=4log2sinx+9log3cosx.y=4^{\log_2 \sin x+9^{\log_3 \cos x}}.

Using the property au+v=auava^{u+v}=a^u\cdot a^v we write

y=4log2sinx49log3cosx.y=4^{\log_2 \sin x}\cdot 4^{9^{\log_3 \cos x}}.
  1. For the first factor, use the identity
      alogbc=clogbaa^{\log_b c} = c^{\log_b a}:
        4log2sinx=(sinx)log24=(sinx)2,     4^{\log_2 \sin x} = (\sin x)^{\log_2 4}=(\sin x)^2,      since log24=2\log_2 4=2.

  2. For the second factor, first simplify the exponent
        9log3cosx=(cosx)log39=(cosx)2,     9^{\log_3 \cos x}=(\cos x)^{\log_3 9}=(\cos x)^2,      since log39=2\log_3 9=2. Then,     49log3cosx=4(cosx)2.     4^{9^{\log_3 \cos x}}= 4^{(\cos x)^2}.   

Thus,

y=(sinx)24cos2x.y=(\sin x)^2\cdot 4^{\cos^2 x}.

Write 4cos2x=ecos2xln44^{\cos^2 x}=e^{\cos^2 x\ln 4}. Now differentiate using the product rule:

Let

u=sin2x,u=2sinxcosx,u=\sin^2 x,\quad u' =2\sin x\cos x, v=4cos2x=ecos2xln4,sov=4cos2xln4ddx(cos2x).v=4^{\cos^2 x}=e^{\cos^2 x\ln 4},\quad \text{so}\quad v'=4^{\cos^2 x}\ln 4\cdot \frac{d}{dx}(\cos^2 x).

Differentiate cos2x\cos^2 x using the chain rule:

ddx(cos2x)=2cosxsinx.\frac{d}{dx}(\cos^2 x)=-2\cos x\sin x.

Thus,

v=2ln4sinxcosx4cos2x.v'=-2\ln 4\sin x\cos x\cdot 4^{\cos^2 x}.

Applying the product rule:

dydx=uv+uv=[2sinxcosx4cos2x]+[(sinx)2(2ln4sinxcosx4cos2x)].\frac{dy}{dx}= u'v+uv' = \bigl[2\sin x\cos x\cdot 4^{\cos^2 x}\bigr] + \bigl[(\sin x)^2\cdot (-2\ln 4\sin x\cos x\cdot 4^{\cos^2 x})\bigr].

Factor common terms 2sinxcosx4cos2x2\sin x\cos x\cdot 4^{\cos^2 x}:

dydx=2sinxcosx4cos2x[1(sinx)2ln4].\frac{dy}{dx}=2\sin x\cos x\cdot 4^{\cos^2 x}\Bigl[1- (\sin x)^2\ln 4\Bigr].