Solveeit Logo

Question

Question: y = tan^{-1}(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}})...

y = tan^{-1}(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}})

Answer

\frac{dy}{dx}=0.

Explanation

Solution

Solution:

We are given

y=tan1(1+x1x1+x1x).y=\tan^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right).

Since the numerator and denominator are identical (except when they vanish),

1+x1x1+x1x=1for x0.\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}} = 1 \quad \text{for } x \neq 0.

Thus,

y=tan1(1)=π4,y=\tan^{-1}(1)=\frac{\pi}{4},

which is a constant.

Differentiating a constant, we get

dydx=0.\frac{dy}{dx}=0.

Quick Explanation:

  • Simplify the fraction to 1.
  • y=tan1(1)=π/4y=\tan^{-1}(1)=\pi/4 is constant, so its derivative is 0.