Solveeit Logo

Question

Mathematics Question on Statistics

y=tan1(11+x+x2)+tan1(1x2+3x+3)+tan1(1x2+5x+7)+......+y =\tan^{-1} \left( \frac{1}{1+x+x^{2}} \right) + \tan ^{-1} \left( \frac{1}{x^{2}+3x+3} \right) + \tan ^{-1} \left( \frac{1}{x^{2}+5x+7} \right) + ......+ upto nn terms, then dydx\frac{dy}{dx} at x=0x = 0 and n=1n = 1 is equal to

A

12 \frac{1}{2}

B

12 - \frac{1}{2}

C

0

D

13 \frac{1}{3}

Answer

12 - \frac{1}{2}

Explanation

Solution

For n=1,y=tan1(11+x+x2)n= 1, y =\tan ^{-1} \left(\frac{1}{1+x+x^{2}}\right)
dydx=11+(11+x+x2)2.1(1+x+x2)2.(2x+1)\therefore \:\:\: \frac{dy}{dx} = \frac{1}{1+\left(\frac{1}{1+x+x^{2}}\right)^{2}} . \frac{-1}{\left(1+x+x^{2}\right)^{2}} .\left(2x+1\right)
=((2x+1))(1+x+x2)2+1= \frac{\left(-\left(2x+1\right)\right)}{\left(1+x+x^{2}\right)^{2}+1}
dydx=2x+1x4+2x3+3x2+2x+2\frac{dy}{dx} = -\frac{2x+1}{x^{4}+2x^{3}+3x^{2}+2x+2}
Now , dydxx=0=12\frac{dy}{dx}_{x=0} = - \frac{1}{2}