Solveeit Logo

Question

Mathematics Question on Application of derivatives

y=tan1(4sin2xcos2x6sin2x)y = tan^{-1} (\frac{4 sin 2x}{cos 2x - 6sin^2x}) then dydx\frac{dy}{dx} at x=0x=0.

Answer

To find dxdt\frac{dx}{dt} of tan1[(cos(2x)6sin2(x))(4sin2(x))]tan^{-1}[\frac{(cos(2x)-6sin^2(x))}{(4sin^2(x))}] at x=0x=0,

we first substitute u=(cos(2x)6sin2(x))(4sin2(x))u=\frac{(cos(2x)-6sin^2(x))}{(4sin^2(x))}.

Then, using the chain rule, we get dxdt\frac{dx}{dt} of tan1(u)tan^{-1}(u) times dxdt\frac{dx}{dt} of u.

Simplifying the expression and evaluating it at x=0x=0, we get the final answer as 8.