Solveeit Logo

Question

Question: $y = \sqrt[3]{\tan x}$ $\qquad x$...

y=tanx3y = \sqrt[3]{\tan x} x\qquad x

Answer

The domain of the function is

{xR:x0 and xπ2+kπ,  kZ}.\{x\in\mathbb{R} : x\neq 0 \text{ and } x\neq \frac{\pi}{2}+k\pi,\; k\in\mathbb{Z}\}.
Explanation

Solution

Explanation:
For the function

y=tanxx3,y=\sqrt[3]{\frac{\tan x}{x}},

the cube root is defined for all real numbers. Thus, restrictions come from the expression inside the cube root:

  1. The denominator xx must not be zero (i.e. x0x \neq 0).
  2. tanx\tan x is undefined when cosx=0\cos x = 0; that is, for x=π2+kπx=\frac{\pi}{2}+k\pi where kZk\in\mathbb{Z}.

Answer:
The domain of the function is

{xR:x0 and xπ2+kπ,  kZ}.\{x\in\mathbb{R} : x\neq 0 \text{ and } x\neq \frac{\pi}{2}+k\pi,\; k\in\mathbb{Z}\}.