Solveeit Logo

Question

Question: $\displaystyle y = sec^{-1}(\frac{1+e^{2\sqrt{x}}}{2e^{\sqrt{x}}})$...

y=sec1(1+e2x2ex)\displaystyle y = sec^{-1}(\frac{1+e^{2\sqrt{x}}}{2e^{\sqrt{x}}})

Answer

dydx=12xcoshx\displaystyle \frac{dy}{dx}=\frac{1}{2\sqrt{x}\,\cosh\sqrt{x}}

Explanation

Solution

We start with

y=sec1(1+e2x2ex).y=\sec^{-1}\Bigl(\frac{1+e^{2\sqrt{x}}}{2e^{\sqrt{x}}}\Bigr).

Notice that

1+e2x2ex=ex+ex2=coshx.\frac{1+e^{2\sqrt{x}}}{2e^{\sqrt{x}}}=\frac{e^{\sqrt{x}}+e^{-\sqrt{x}}}{2}=\cosh\sqrt{x}.

Thus,

y=sec1(coshx).y=\sec^{-1}\Bigl(\cosh\sqrt{x}\Bigr).

The derivative formula for y=sec1(u)y=\sec^{-1}(u) (with u>0u>0) is

dydx=u(x)uu21.\frac{dy}{dx}=\frac{u'(x)}{u\,\sqrt{u^2-1}}.

Here, u(x)=coshxu(x)=\cosh\sqrt{x}. Differentiate using the chain rule:

u(x)=ddxcoshx=sinhx12x=sinhx2x.u'(x)=\frac{d}{dx}\cosh\sqrt{x}=\sinh\sqrt{x}\cdot\frac{1}{2\sqrt{x}}=\frac{\sinh\sqrt{x}}{2\sqrt{x}}.

Since

u21=cosh2x1=sinh2x=sinhx(for x>0),\sqrt{u^2-1}=\sqrt{\cosh^2\sqrt{x}-1}=\sqrt{\sinh^2\sqrt{x}}=\sinh\sqrt{x}\quad (\text{for } \sqrt{x}>0),

we have

dydx=sinhx2xcoshxsinhx=12xcoshx.\frac{dy}{dx}=\frac{\frac{\sinh\sqrt{x}}{2\sqrt{x}}}{\cosh\sqrt{x}\,\sinh\sqrt{x}}=\frac{1}{2\sqrt{x}\,\cosh\sqrt{x}}.