Solveeit Logo

Question

Question: y = f (x) is a parabola having directrix with slope 0. If $f^2(0) + f^2(1) + f^2(2) + 45 = 10f(0) + ...

y = f (x) is a parabola having directrix with slope 0. If f2(0)+f2(1)+f2(2)+45=10f(0)+8f(1)+4f(2)f^2(0) + f^2(1) + f^2(2) + 45 = 10f(0) + 8f(1) + 4f(2), then -

A

y = f (x) is symmetric about x = 12-\frac{1}{2}

B

f (x) <0 ∀x∈R

C

ln(f(x))\ln|(f (x))| is one-one function

D

range of f (x) is (,418](-\infty,\frac{41}{8}]

Answer

(A), (D)

Explanation

Solution

The given equation y=f(x)y = f(x) represents a parabola whose directrix has a slope of 0. This implies the directrix is a horizontal line, say y=ky=k. For a parabola with a horizontal directrix, the axis of symmetry must be a vertical line. Therefore, the equation of the parabola is of the form f(x)=ax2+bx+cf(x) = ax^2 + bx + c, where a0a \neq 0.

We are given the equation f2(0)+f2(1)+f2(2)+45=10f(0)+8f(1)+4f(2)f^2(0) + f^2(1) + f^2(2) + 45 = 10f(0) + 8f(1) + 4f(2). Rearranging the terms, we get: f2(0)10f(0)+f2(1)8f(1)+f2(2)4f(2)+45=0f^2(0) - 10f(0) + f^2(1) - 8f(1) + f^2(2) - 4f(2) + 45 = 0 We can complete the square for each quadratic term in f(0)f(0), f(1)f(1), and f(2)f(2): (f2(0)10f(0)+25)+(f2(1)8f(1)+16)+(f2(2)4f(2)+4)+4525164=0(f^2(0) - 10f(0) + 25) + (f^2(1) - 8f(1) + 16) + (f^2(2) - 4f(2) + 4) + 45 - 25 - 16 - 4 = 0 (f(0)5)2+(f(1)4)2+(f(2)2)2+4545=0(f(0) - 5)^2 + (f(1) - 4)^2 + (f(2) - 2)^2 + 45 - 45 = 0 (f(0)5)2+(f(1)4)2+(f(2)2)2=0(f(0) - 5)^2 + (f(1) - 4)^2 + (f(2) - 2)^2 = 0

Since the square of a real number is non-negative, the sum of squares is zero if and only if each term is zero. Thus, we have: f(0)5=0    f(0)=5f(0) - 5 = 0 \implies f(0) = 5 f(1)4=0    f(1)=4f(1) - 4 = 0 \implies f(1) = 4 f(2)2=0    f(2)=2f(2) - 2 = 0 \implies f(2) = 2

Now we use the form f(x)=ax2+bx+cf(x) = ax^2 + bx + c: f(0)=a(0)2+b(0)+c=c=5f(0) = a(0)^2 + b(0) + c = c = 5 f(1)=a(1)2+b(1)+c=a+b+c=4f(1) = a(1)^2 + b(1) + c = a + b + c = 4 f(2)=a(2)2+b(2)+c=4a+2b+c=2f(2) = a(2)^2 + b(2) + c = 4a + 2b + c = 2

Substitute c=5c=5 into the other two equations: a+b+5=4    a+b=1a + b + 5 = 4 \implies a + b = -1 (1) 4a+2b+5=2    4a+2b=34a + 2b + 5 = 2 \implies 4a + 2b = -3 (2)

From equation (1), b=1ab = -1 - a. Substitute this into equation (2): 4a+2(1a)=34a + 2(-1 - a) = -3 4a22a=34a - 2 - 2a = -3 2a=12a = -1 a=12a = -\frac{1}{2}

Now find bb: b=1a=1(12)=1+12=12b = -1 - a = -1 - (-\frac{1}{2}) = -1 + \frac{1}{2} = -\frac{1}{2}

So the equation of the parabola is f(x)=12x212x+5f(x) = -\frac{1}{2}x^2 - \frac{1}{2}x + 5.

Now let's evaluate the given options: (A) y=f(x)y = f(x) is symmetric about x=12x = -\frac{1}{2}. The axis of symmetry of a parabola y=ax2+bx+cy = ax^2 + bx + c is x=b2ax = -\frac{b}{2a}. For f(x)=12x212x+5f(x) = -\frac{1}{2}x^2 - \frac{1}{2}x + 5, a=12a = -\frac{1}{2} and b=12b = -\frac{1}{2}. The axis of symmetry is x=122(12)=121=12x = -\frac{-\frac{1}{2}}{2(-\frac{1}{2})} = -\frac{-\frac{1}{2}}{-1} = -\frac{1}{2}. Thus, the parabola is symmetric about x=12x = -\frac{1}{2}. Option (A) is correct.

(B) f(x)<0xRf(x) < 0 \forall x \in R. The parabola opens downwards since a=12<0a = -\frac{1}{2} < 0. The vertex is the maximum point. The x-coordinate of the vertex is x=12x = -\frac{1}{2}. The y-coordinate of the vertex is f(12)=12(12)212(12)+5=12(14)+14+5=18+28+5=18+5=418f(-\frac{1}{2}) = -\frac{1}{2}(-\frac{1}{2})^2 - \frac{1}{2}(-\frac{1}{2}) + 5 = -\frac{1}{2}(\frac{1}{4}) + \frac{1}{4} + 5 = -\frac{1}{8} + \frac{2}{8} + 5 = \frac{1}{8} + 5 = \frac{41}{8}. The maximum value of f(x)f(x) is 418\frac{41}{8}. Since the maximum value is positive, f(x)f(x) is not always negative. For example, f(0)=5>0f(0) = 5 > 0. Option (B) is incorrect.

(C) lnf(x)\ln|f(x)| is one-one function. A function is one-one if f(x1)=f(x2)f(x_1) = f(x_2) implies x1=x2x_1 = x_2. The parabola f(x)=12x212x+5f(x) = -\frac{1}{2}x^2 - \frac{1}{2}x + 5 is symmetric about x=12x = -\frac{1}{2}. For any δ0\delta \neq 0, f(12+δ)=f(12δ)f(-\frac{1}{2} + \delta) = f(-\frac{1}{2} - \delta). For instance, f(0)=5f(0) = 5 and f(1)=12(1)212(1)+5=12+12+5=5f(-1) = -\frac{1}{2}(-1)^2 - \frac{1}{2}(-1) + 5 = -\frac{1}{2} + \frac{1}{2} + 5 = 5. Since f(0)=f(1)=5f(0) = f(-1) = 5 and 010 \neq -1, f(x)f(x) is not one-one. The function lnu\ln|u| is not one-one on R{0}R \setminus \{0\}; it is one-one on (0,)(0, \infty) and (,0)(-\infty, 0). However, the composite function lnf(x)\ln|f(x)| requires f(x)f(x) to take values such that f(x)|f(x)| is in the domain of ln\ln, i.e., f(x)>0|f(x)| > 0 or f(x)0f(x) \neq 0. Since f(0)=5f(0)=5 and f(1)=5f(-1)=5, lnf(0)=ln5=ln5\ln|f(0)| = \ln|5| = \ln 5 and lnf(1)=ln5=ln5\ln|f(-1)| = \ln|5| = \ln 5. Thus, lnf(0)=lnf(1)\ln|f(0)| = \ln|f(-1)| for 010 \neq -1. Therefore, lnf(x)\ln|f(x)| is not a one-one function. Option (C) is incorrect.

(D) range of f(x)f(x) is (,418](-\infty, \frac{41}{8}]. As calculated in (B), the parabola opens downwards and has a maximum value at the vertex (12,418)(-\frac{1}{2}, \frac{41}{8}). The range of f(x)f(x) is (,maximum value]=(,418](-\infty, \text{maximum value}] = (-\infty, \frac{41}{8}]. Option (D) is correct.

Both options (A) and (D) are correct.