Solveeit Logo

Question

Question: Express $y = \cos^{-1}(2x^{2}-1)$ in terms of $\cos^{-1}x$. ...

Express y=cos1(2x21)y = \cos^{-1}(2x^{2}-1) in terms of cos1x\cos^{-1}x.

A

2cos1x2\cos^{-1}x

B

2π2cos1x2\pi - 2\cos^{-1}x

C

2cos1(x)2\cos^{-1}(|x|)

D

cos1x\cos^{-1}x

Answer

2cos1(x)2\cos^{-1}(|x|)

Explanation

Solution

Let θ=cos1x\theta = \cos^{-1}x. Then x=cosθx = \cos\theta, where 0θπ0 \le \theta \le \pi. Substituting x=cosθx = \cos\theta into the given equation: y=cos1(2(cosθ)21)y = \cos^{-1}(2(\cos\theta)^2 - 1) y=cos1(2cos2θ1)y = \cos^{-1}(2\cos^2\theta - 1)

Using the double angle identity cos(2θ)=2cos2θ1\cos(2\theta) = 2\cos^2\theta - 1: y=cos1(cos(2θ))y = \cos^{-1}(\cos(2\theta))

We know that cos1(cosz)=z\cos^{-1}(\cos z) = z if 0zπ0 \le z \le \pi, and cos1(cosz)=2πz\cos^{-1}(\cos z) = 2\pi - z if π<z2π\pi < z \le 2\pi. In our case, z=2θz = 2\theta. Since 0θπ0 \le \theta \le \pi, the range of 2θ2\theta is [0,2π][0, 2\pi].

Case 1: 02θπ0 \le 2\theta \le \pi. This implies 0θπ20 \le \theta \le \frac{\pi}{2}. Since θ=cos1x\theta = \cos^{-1}x, this means 0cos1xπ20 \le \cos^{-1}x \le \frac{\pi}{2}, which corresponds to 0x10 \le x \le 1. In this case, y=2θ=2cos1xy = 2\theta = 2\cos^{-1}x.

Case 2: π<2θ2π\pi < 2\theta \le 2\pi. This implies π2<θπ\frac{\pi}{2} < \theta \le \pi. Since θ=cos1x\theta = \cos^{-1}x, this means π2<cos1xπ\frac{\pi}{2} < \cos^{-1}x \le \pi, which corresponds to 1x<0-1 \le x < 0. In this case, y=2π2θ=2π2cos1xy = 2\pi - 2\theta = 2\pi - 2\cos^{-1}x.

Combining both cases, we can write the solution piecewise: y={2cos1xif 0x12π2cos1xif 1x<0y = \begin{cases} 2\cos^{-1}x & \text{if } 0 \le x \le 1 \\ 2\pi - 2\cos^{-1}x & \text{if } -1 \le x < 0 \end{cases}

We can express this more compactly using the absolute value function. For x[1,1]x \in [-1, 1]: If x0x \ge 0, then x=x|x|=x, and 2cos1(x)=2cos1x2\cos^{-1}(|x|) = 2\cos^{-1}x. If x<0x < 0, then x=x|x|=-x, and 2cos1(x)=2cos1(x)2\cos^{-1}(|x|) = 2\cos^{-1}(-x). Using the property cos1(x)=πcos1x\cos^{-1}(-x) = \pi - \cos^{-1}x, we get 2(πcos1x)=2π2cos1x2(\pi - \cos^{-1}x) = 2\pi - 2\cos^{-1}x.

Thus, the expression y=2cos1(x)y = 2\cos^{-1}(|x|) covers both cases.