Question
Mathematics Question on Continuity and differentiability
y=f(x) l ag(x)mbh(x)nc,prove that dxdy=f′(x) l ag′(x)mbh′(x)nc
Answer
y=f(x) l ag(x)mbh(x)nc
⇒ y=(mc-nb)f(x)-(lc-na)g(x)+(lb-ma)h(x)
Then,dxdy=dxd[(mc-nb)f(x)]-dxd(lc-na)g(x)]+dxd[(lb-ma)h(x)]
=(mc-nb)f'(x)-(lc-na)g'(x)+(lb-ma)h'(x)
=f′(x) l ag′(x)mbh′(x)nc
Thus, dxdy=f(x) l ag(x)mbh(x)nc