Solveeit Logo

Question

Question: \(y = a\cos(kx + \omega t)\) superimposes on another wave giving a stationary wave having node at x ...

y=acos(kx+ωt)y = a\cos(kx + \omega t) superimposes on another wave giving a stationary wave having node at x = 0. What is the equation of the other wave

A

acos(kx+ωt)- a\cos(kx + \omega t)

B

acos(kxωt)a\cos(kx - \omega t)

C

acos(kxωt)- a\cos(kx - \omega t)

D

asin(kx+ωt)- a\sin(kx + \omega t)

Answer

acos(kxωt)- a\cos(kx - \omega t)

Explanation

Solution

acos(kx+ωt)a\cos(kx + \omega t)

hence yreflected=acos(kx+ωt+π)=acos(kxωt)y_{\text{reflected}} = a\cos( - kx + \omega t + \pi) = - a\cos(kx - \omega t)