Solveeit Logo

Question

Question: \(y = a\cos x + b\sin x\) is the solution of which of the following differential equations. A. \(\...

y=acosx+bsinxy = a\cos x + b\sin x is the solution of which of the following differential equations.
A. d2ydx2+y=0\dfrac{{{d^2}y}}{{d{x^2}}} + y = 0
B. d2ydx2y=0\dfrac{{{d^2}y}}{{d{x^2}}} - y = 0
C. dydx+y=0\dfrac{{dy}}{{dx}} + y = 0
D. dydx+xdydx=0\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}} = 0

Explanation

Solution

To find the differential equation of y=acosx+bsinxy = a\cos x + b\sin x, differentiate it once with respect to x and we will get 1st order differential equation. After getting the differential, differentiate it again w.r.t x and we will get a 2nd order differential equation.

Complete step-by-step answer:
In this question, we are given a trigonometric equation and we need to find out its differential equation.
The given trigonometric equation is : y=acosx+bsinxy = a\cos x + b\sin x - - - - - - - - - - - - - - - - (1)
Here, we have to differentiate equation (1) with respect to x.
Therefore, differentiating equation (1) w.r.t x, we get
dydx=ddx(acosx)+ddx(bsinx)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {a\cos x} \right) + \dfrac{d}{{dx}}\left( {b\sin x} \right)
Now, a and b are constants, so we can take them out. Therefore, we get
dydx=addxcosx+bddxsinx\Rightarrow \dfrac{{dy}}{{dx}} = a\dfrac{d}{{dx}}\cos x + b\dfrac{d}{{dx}}\sin x - - - - - - - - - - - (2)
Now, derivative of cosx is –sinx and derivative of sinx is cosx. Therefore, equation (2) becomes
dydx=a(sinx)+b(cosx)\Rightarrow \dfrac{{dy}}{{dx}} = a\left( { - \sin x} \right) + b\left( {\cos x} \right)
dydx=asinx+bcosx\Rightarrow \dfrac{{dy}}{{dx}} = - a\sin x + b\cos x - - - - - - - - - - - (3)
Now, again differentiating equation (3) w.r.t x, we get
d2ydx2=ddx(asinx)+ddx(bcosx) d2ydx2=addxsinx+bddxcosx d2ydx2=acosxbsinx  \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( { - a\sin x} \right) + \dfrac{d}{{dx}}\left( {b\cos x} \right) \\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - a\dfrac{d}{{dx}}\sin x + b\dfrac{d}{{dx}}\cos x \\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - a\cos x - b\sin x \\\
Now, we can take out minus (-) common. Therefore, we get
d2ydx2=(acosx+bsinx)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - \left( {a\cos x + b\sin x} \right) - - - - - - - - - - (4)
Now, we have y=acosx+bsinxy = a\cos x + b\sin x. Therefore, equation (4) becomes
d2ydx2=y d2ydx2+y=0  \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = - y \\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} + y = 0 \\\
Hence, the differential equation of y=acosx+bsinxy = a\cos x + b\sin x is d2ydx2+y=0\dfrac{{{d^2}y}}{{d{x^2}}} + y = 0.

So, the correct answer is “Option A”.

Note: We can cross check our answer. Here, our answer is d2ydx2+y=0\dfrac{{{d^2}y}}{{d{x^2}}} + y = 0, where y=acosx+bsinxy = a\cos x + b\sin xand d2ydx2=acosxbsinx\dfrac{{{d^2}y}}{{d{x^2}}} = - a\cos x - b\sin x. Therefore, putting these values in the differential equation, we get
d2ydx2+y=acosxbsinx+acosx+bsinx d2ydx2+y=0  \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} + y = - a\cos x - b\sin x + a\cos x + b\sin x \\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} + y = 0 \\\
Hence, our answer is correct.