Solveeit Logo

Question

Question: $y = 4^{\log_2 \sin x + 9^{\log_3 \cos x}}$ ...

y=4log2sinx+9log3cosxy = 4^{\log_2 \sin x + 9^{\log_3 \cos x}}

Answer

dydx=2sinxcosx4cos2x(1ln4sin2x)\frac{dy}{dx} = 2\sin x\cos x\, 4^{\cos^2 x}\left(1 - \ln4\,\sin^2 x\right)

Explanation

Solution

  1. Write y=4log2sinx49log3cosxy = 4^{\log_2 \sin x} \cdot 4^{9^{\log_3 \cos x}}.

  2. Simplify:

4log2sinx=sin2x,9log3cosx=cos2x,so49log3cosx=4cos2x.4^{\log_2 \sin x} = \sin^2 x,\quad 9^{\log_3 \cos x} = \cos^2 x,\quad \text{so}\quad 4^{9^{\log_3 \cos x}} = 4^{\cos^2 x}.
  1. Differentiate y=sin2x4cos2xy = \sin^2 x \cdot 4^{\cos^2 x} using the product rule and chain rule.

  2. Final answer:

dydx=2sinxcosx4cos2x(1ln4sin2x).\frac{dy}{dx} = 2\sin x\cos x\, 4^{\cos^2 x}\left(1 - \ln4\,\sin^2 x\right).