Solveeit Logo

Question

Question: \(y = 4 \sin 3 x\) is a solution of the differential equation...

y=4sin3xy = 4 \sin 3 x is a solution of the differential equation

A

dydx+8y=0\frac { d y } { d x } + 8 y = 0

B

dydx8y=0\frac { d y } { d x } - 8 y = 0

C

d2ydx2+9y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + 9 y = 0

D

d2ydx29y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } - 9 y = 0

Answer

d2ydx2+9y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + 9 y = 0

Explanation

Solution

Let y=4sin3xdydx=12cos3xy = 4 \sin 3 x \Rightarrow \frac { d y } { d x } = 12 \cos 3 x

d2ydx2=36sin3x=9×4sin3x=9y\frac { d ^ { 2 } y } { d x ^ { 2 } } = - 36 \sin 3 x = - 9 \times 4 \sin 3 x = - 9 y

d2ydx2+9y=0\frac { d ^ { 2 } y } { d x ^ { 2 } } + 9 y = 0 .