Solveeit Logo

Question

Question: Y = 10 (in sec x cube minus 10 x cube bracket close pi by 2 is greater than x cube greater than 3/2...

Y = 10 (in sec x cube minus 10 x cube bracket close pi by 2 is greater than x cube greater than 3/2

A

x \cdot y'' + 2y' = 0

B

x^2 \cdot y'' - 6y + 3\pi/12 = 0

C

x^2 \cdot y'' - 6y + 3\pi = 0

D

x \cdot y'' - 4y' = 0

Answer

None of the options is correct

Explanation

Solution

We start with

y=tan1(secx3tanx3),withπ2<x3<3π2.y=\tan^{-1}\Bigl(\sec x^3-\tan x^3\Bigr),\quad \text{with} \quad \frac{\pi}{2}<x^3<\frac{3\pi}{2}.

A standard trigonometric result shows that

secx3tanx3=tan(π4x32).\sec x^3-\tan x^3=\tan\Bigl(\frac{\pi}{4}-\frac{x^3}{2}\Bigr).

Thus,

y=tan1(tan(π4x32))=π4x32,y=\tan^{-1}\Bigl(\tan\Bigl(\frac{\pi}{4}-\frac{x^3}{2}\Bigr)\Bigr) =\frac{\pi}{4}-\frac{x^3}{2},

since the angle π4x32\frac{\pi}{4}-\frac{x^3}{2} lies in the principal range (π/2,π/2)(-\pi/2,\pi/2).

Differentiate:

y=32x2,y=3x.y'=-\frac{3}{2}x^2,\quad y''=-3x.

It can be verified that none of the candidate differential equations provided (after substitution) lead to an identity. For example, testing one option:

xy+2y=x(3x)+2(32x2)=3x23x2=6x20.x\,y''+2y' = x(-3x)+2\Bigl(-\frac{3}{2}x^2\Bigr) =-3x^2-3x^2=-6x^2\neq0.

Thus, none of the given options is correct.


Explanation (minimal):
Use the identity secθtanθ=tan(π/4θ/2)\sec\theta-\tan\theta=\tan(\pi/4-\theta/2) with θ=x3\theta=x^3 to get y=π/4x32y=\pi/4-\frac{x^3}{2}. Then differentiate to obtain y=32x2y'=-\frac{3}{2}x^2 and y=3xy''=-3x. None of the given differential equations are identically satisfied by these expressions.