Solveeit Logo

Question

Question: Xxny satisfy both the equation log x to the base 3 + log y to the base 2 equal to 2 and 3 to the pow...

Xxny satisfy both the equation log x to the base 3 + log y to the base 2 equal to 2 and 3 to the power x - 2 to the power y = 23 then sum of all

A

3

B

4

C

5

D

6

Answer

5

Explanation

Solution

The given system of equations is:

  1. log3x+log2y=2\log_3 x + \log_2 y = 2
  2. 3x2y=233^x - 2^y = 23

Step 1: Determine the domain of the variables.

For the logarithms to be defined, x>0x > 0 and y>0y > 0.

Step 2: Solve by inspection or trial and error for integer solutions.

Let's analyze the second equation: 3x2y=233^x - 2^y = 23. We can test integer values for xx:

  • If x=1x=1, 312y=23    32y=23    2y=203^1 - 2^y = 23 \implies 3 - 2^y = 23 \implies 2^y = -20. No real solution for yy.
  • If x=2x=2, 322y=23    92y=23    2y=143^2 - 2^y = 23 \implies 9 - 2^y = 23 \implies 2^y = -14. No real solution for yy.
  • If x=3x=3, 332y=23    272y=23    2y=43^3 - 2^y = 23 \implies 27 - 2^y = 23 \implies 2^y = 4. This implies y=2y=2.

So, (x,y)=(3,2)(x,y) = (3,2) is a potential solution.

Step 3: Verify the potential solution with the first equation.

Substitute (x,y)=(3,2)(x,y) = (3,2) into the first equation: log3x+log2y=log33+log22=1+1=2\log_3 x + \log_2 y = \log_3 3 + \log_2 2 = 1 + 1 = 2. The solution (3,2)(3,2) satisfies both equations.

Step 4: Prove the uniqueness of the solution.

From the first equation, we can express yy in terms of xx: log2y=2log3x\log_2 y = 2 - \log_3 x y=2(2log3x)y = 2^{(2 - \log_3 x)}

Substitute this expression for yy into the second equation: 3x2(2log3x)=233^x - 2^{(2 - \log_3 x)} = 23

Let f(x)=3x2(2log3x)f(x) = 3^x - 2^{(2 - \log_3 x)}. We need to determine if f(x)=23f(x)=23 has a unique solution. We can do this by examining the derivative of f(x)f(x). f(x)=ddx(3x)ddx(2(2log3x))f'(x) = \frac{d}{dx}(3^x) - \frac{d}{dx}(2^{(2 - \log_3 x)})

First term: ddx(3x)=3xln3\frac{d}{dx}(3^x) = 3^x \ln 3.

Second term: Let u=2log3xu = 2 - \log_3 x. Then ddx(2u)=2uln2dudx\frac{d}{dx}(2^u) = 2^u \ln 2 \cdot \frac{du}{dx}. Calculate dudx\frac{du}{dx}: u=2lnxln3u = 2 - \frac{\ln x}{\ln 3} dudx=01ln31x=1xln3\frac{du}{dx} = 0 - \frac{1}{\ln 3} \cdot \frac{1}{x} = -\frac{1}{x \ln 3}.

So, ddx(2(2log3x))=2(2log3x)ln2(1xln3)=2(2log3x)ln2xln3\frac{d}{dx}(2^{(2 - \log_3 x)}) = 2^{(2 - \log_3 x)} \ln 2 \cdot \left(-\frac{1}{x \ln 3}\right) = -\frac{2^{(2 - \log_3 x)} \ln 2}{x \ln 3}.

Now, substitute these back into f(x)f'(x): f(x)=3xln3(2(2log3x)ln2xln3)f'(x) = 3^x \ln 3 - \left(-\frac{2^{(2 - \log_3 x)} \ln 2}{x \ln 3}\right) f(x)=3xln3+2(2log3x)ln2xln3f'(x) = 3^x \ln 3 + \frac{2^{(2 - \log_3 x)} \ln 2}{x \ln 3}

For x>0x > 0:

  • 3x>03^x > 0 and ln3>0\ln 3 > 0, so 3xln3>03^x \ln 3 > 0.
  • 2(2log3x)>02^{(2 - \log_3 x)} > 0, ln2>0\ln 2 > 0, x>0x > 0, and ln3>0\ln 3 > 0, so 2(2log3x)ln2xln3>0\frac{2^{(2 - \log_3 x)} \ln 2}{x \ln 3} > 0.

Since both terms are positive, f(x)>0f'(x) > 0 for all x>0x > 0. This means f(x)f(x) is a strictly increasing function. A strictly increasing function can intersect a horizontal line (like f(x)=23f(x)=23) at most once. Since we found one solution (x,y)=(3,2)(x,y) = (3,2), this must be the unique solution to the system.

Step 5: Calculate the requested sum.

The question asks for "sum of all". Given that there is a unique solution (x,y)=(3,2)(x,y)=(3,2), it is highly probable that it refers to the sum of xx and yy. Sum =x+y=3+2=5= x+y = 3+2 = 5.