Solveeit Logo

Question

Question: [x]*{x}=ax^2, [] represents greater integer function, {} represents fractional part function, sum of...

[x]*{x}=ax^2, [] represents greater integer function, {} represents fractional part function, sum of all real nos satisfying this = 420, find a

Answer

29/900

Explanation

Solution

Let the given equation be [x]{x}=ax2[x]\{x\} = ax^2. We know that any real number xx can be written as x=[x]+{x}x = [x] + \{x\}, where [x][x] is the greatest integer less than or equal to xx (an integer) and {x}\{x\} is the fractional part of xx, with 0{x}<10 \le \{x\} < 1. Let n=[x]n = [x] and f={x}f = \{x\}. The equation becomes nf=a(n+f)2nf = a(n+f)^2.

Case 1: x=0x=0. If x=0x=0, then n=[0]=0n=[0]=0 and f={0}=0f=\{0\}=0. The equation is 0×0=a(0+0)20 \times 0 = a(0+0)^2, which simplifies to 0=00=0. This is true for any value of aa. So x=0x=0 is a solution for any aa.

Case 2: x0x \ne 0. If x0x \ne 0, then n+f0n+f \ne 0. If n=0n=0, then 0x<10 \le x < 1. Since x0x \ne 0, 0<x<10 < x < 1. This means n=0n=0 and f=x0f=x \ne 0. The equation becomes 0×f=a(0+f)20 \times f = a(0+f)^2, so 0=af20 = af^2. Since f0f \ne 0, f20f^2 \ne 0. Thus, we must have a=0a=0. If a=0a=0, the original equation is [x]{x}=0[x]\{x\} = 0. This is satisfied if [x]=0[x]=0 or {x}=0\{x\}=0. [x]=0[x]=0 means 0x<10 \le x < 1. {x}=0\{x\}=0 means xx is an integer. So for a=0a=0, the solutions are x[0,1)Zx \in [0, 1) \cup \mathbb{Z}. This set is infinite, and its sum is not a finite number like 420. Therefore, a0a \ne 0.

Since a0a \ne 0, from 0=af20 = af^2 with f0f \ne 0, there are no solutions with n=0n=0 (i.e., 0<x<10 < x < 1). Also, if xx is a non-zero integer, then f={x}=0f=\{x\}=0. The equation becomes n×0=a(n+0)2n \times 0 = a(n+0)^2, so 0=an20 = an^2. Since a0a \ne 0 and n0n \ne 0, an20an^2 \ne 0. Thus, there are no non-zero integer solutions when a0a \ne 0. So, for x0x \ne 0, we must have n=[x]0n=[x] \ne 0 and f={x}0f=\{x\} \ne 0. This implies 0<f<10 < f < 1.

The equation is nf=a(n+f)2nf = a(n+f)^2. If x>0x > 0, then n=[x]1n=[x] \ge 1. Since 0<f<10 < f < 1, nf>0nf > 0. So a(n+f)2>0a(n+f)^2 > 0. Since (n+f)2>0(n+f)^2 > 0, we must have a>0a > 0. If x<0x < 0, then n=[x]1n=[x] \le -1. Since 0<f<10 < f < 1, n+fn+f could be positive, negative or zero. nf<0nf < 0. So a(n+f)2<0a(n+f)^2 < 0. Since (n+f)2>0(n+f)^2 > 0, we must have a<0a < 0.

Let's rewrite the equation as a quadratic in ff for a fixed integer n0n \ne 0: nf=a(n2+2nf+f2)nf = a(n^2 + 2nf + f^2) nf=an2+2anf+af2nf = an^2 + 2anf + af^2 af2+(2ann)f+an2=0af^2 + (2an - n)f + an^2 = 0 af2+n(2a1)f+an2=0af^2 + n(2a-1)f + an^2 = 0.

For ff to be a real number, the discriminant must be non-negative: D=(n(2a1))24a(an2)=n2(2a1)24a2n2=n2((2a1)24a2)D = (n(2a-1))^2 - 4a(an^2) = n^2(2a-1)^2 - 4a^2n^2 = n^2((2a-1)^2 - 4a^2) D=n2(4a24a+14a2)=n2(14a)D = n^2(4a^2 - 4a + 1 - 4a^2) = n^2(1-4a). For real solutions for ff, n2(14a)0n^2(1-4a) \ge 0. Since n0n \ne 0, n2>0n^2 > 0. So 14a01-4a \ge 0, which means a1/4a \le 1/4.

If a=1/4a=1/4, D=0D=0. The quadratic in ff becomes 14f2+n(2(14)1)f+14n2=0\frac{1}{4}f^2 + n(2(\frac{1}{4})-1)f + \frac{1}{4}n^2 = 0. 14f2+n(12)f+14n2=0\frac{1}{4}f^2 + n(-\frac{1}{2})f + \frac{1}{4}n^2 = 0. f22nf+n2=0    (fn)2=0    f=nf^2 - 2nf + n^2 = 0 \implies (f-n)^2 = 0 \implies f=n. Since n=[x]0n=[x] \ne 0, f=nf=n means {x}=[x]\{x\}=[x]. This is only possible if [x]=0[x]=0 and {x}=0\{x\}=0, i.e., x=0x=0. But we are considering x0x \ne 0. If n0n \ne 0, f=nf=n means {x}=[x]\{x\}=[x]. As 0{x}<10 \le \{x\} < 1 and [x][x] is a non-zero integer, this is impossible. So for a=1/4a=1/4, the only solution is x=0x=0. The sum of solutions is 0, not 420. So a1/4a \ne 1/4.

Thus, we must have a<1/4a < 1/4. We also know a0a \ne 0. So a(,0)(0,1/4)a \in (-\infty, 0) \cup (0, 1/4).

The roots for ff are f=n(2a1)±n2(14a)2a=n(2a1)±n14a2af = \frac{-n(2a-1) \pm \sqrt{n^2(1-4a)}}{2a} = \frac{-n(2a-1) \pm |n|\sqrt{1-4a}}{2a}.

If a>0a > 0, then 0<a<1/40 < a < 1/4. Solutions exist for x>0x > 0, so n=[x]1n=[x] \ge 1. For n1n \ge 1, n=n|n|=n. f=n(2a1)±n14a2a=n(12a±14a)2af = \frac{-n(2a-1) \pm n\sqrt{1-4a}}{2a} = \frac{n(1-2a \pm \sqrt{1-4a})}{2a}. Let f1=n(12a+14a)2af_1 = \frac{n(1-2a + \sqrt{1-4a})}{2a} and f2=n(12a14a)2af_2 = \frac{n(1-2a - \sqrt{1-4a})}{2a}. We require 0<f<10 < f < 1. Since 0<a<1/40 < a < 1/4, 12a>12(1/4)=1/2>01-2a > 1-2(1/4)=1/2 > 0 and 14a>0\sqrt{1-4a} > 0. f1=n2a(12a+14a)>n2a(12a)>n2a(1/2)=n4af_1 = \frac{n}{2a}(1-2a + \sqrt{1-4a}) > \frac{n}{2a}(1-2a) > \frac{n}{2a}(1/2) = \frac{n}{4a}. Since n1n \ge 1, f1>14af_1 > \frac{1}{4a}. As a<1/4a < 1/4, 4a<14a < 1, so 14a>1\frac{1}{4a} > 1. Thus f1>1f_1 > 1 for all n1n \ge 1. No solutions from f1f_1. f2=n(12a14a)2af_2 = \frac{n(1-2a - \sqrt{1-4a})}{2a}. We need 0<f2<10 < f_2 < 1. 12a14a>01-2a - \sqrt{1-4a} > 0 since (12a)2=14a+4a2>14a(1-2a)^2 = 1-4a+4a^2 > 1-4a for a0a \ne 0. So f2>0f_2 > 0. We need f2<1f_2 < 1: n(12a14a)2a<1    n(12a14a)<2a\frac{n(1-2a - \sqrt{1-4a})}{2a} < 1 \implies n(1-2a - \sqrt{1-4a}) < 2a. n<2a12a14an < \frac{2a}{1-2a - \sqrt{1-4a}}. Let C+(a)=2a12a14aC_+(a) = \frac{2a}{1-2a - \sqrt{1-4a}}. For a given a(0,1/4)a \in (0, 1/4), solutions x=n+f2x = n+f_2 exist for integers n1n \ge 1 such that n<C+(a)n < C_+(a). The possible values for nn are 1,2,,N+1, 2, \dots, N_+, where N+N_+ is the largest integer such that N+<C+(a)N_+ < C_+(a). For each such nn, there is one solution xn=n+n(12a14a)2a=n(1+12a14a2a)=n(2a+12a14a2a)=n114a2ax_n = n + \frac{n(1-2a - \sqrt{1-4a})}{2a} = n \left( 1 + \frac{1-2a - \sqrt{1-4a}}{2a} \right) = n \left( \frac{2a + 1 - 2a - \sqrt{1-4a}}{2a} \right) = n \frac{1 - \sqrt{1-4a}}{2a}. The sum of these solutions is S+=n=1N+n114a2a=114a2an=1N+n=114a2aN+(N++1)2S_+ = \sum_{n=1}^{N_+} n \frac{1 - \sqrt{1-4a}}{2a} = \frac{1 - \sqrt{1-4a}}{2a} \sum_{n=1}^{N_+} n = \frac{1 - \sqrt{1-4a}}{2a} \frac{N_+(N_+ + 1)}{2}.

If a<0a < 0, solutions exist for x<0x < 0, so n=[x]1n=[x] \le -1. Let n=mn = -m where m1m \ge 1. For n<0n < 0, n=n=m|n|=-n=m. f=(m)(2a1)±m14a2a=m(2a1)±m14a2a=m(2a1±14a)2af = \frac{-(-m)(2a-1) \pm m\sqrt{1-4a}}{2a} = \frac{m(2a-1) \pm m\sqrt{1-4a}}{2a} = \frac{m(2a-1 \pm \sqrt{1-4a})}{2a}. Let f3=m(2a1+14a)2af_3 = \frac{m(2a-1 + \sqrt{1-4a})}{2a} and f4=m(2a114a)2af_4 = \frac{m(2a-1 - \sqrt{1-4a})}{2a}. We require 0<f<10 < f < 1. Since a<0a < 0, 2a<02a < 0. 2a1<12a-1 < -1. 14a>1\sqrt{1-4a} > 1. 2a1+14a2a-1 + \sqrt{1-4a}. Let a=ba = -b where b>0b>0. 2b1+1+4b-2b-1 + \sqrt{1+4b}. 1+4b>1+2b\sqrt{1+4b} > 1+2b is false for b>0b>0. (1+2b)2=1+4b+4b2>1+4b(1+2b)^2 = 1+4b+4b^2 > 1+4b. So 1+4b<1+2b\sqrt{1+4b} < 1+2b. 2a1+14a=2b1+1+4b<2b1+1+2b=02a-1 + \sqrt{1-4a} = -2b-1 + \sqrt{1+4b} < -2b-1 + 1+2b = 0. So 2a1+14a<02a-1 + \sqrt{1-4a} < 0. f3=m(negative)(negative)>0f_3 = \frac{m(\text{negative})}{(\text{negative})} > 0. f4=m(negativepositive)(negative)=m(negative)(negative)>0f_4 = \frac{m(\text{negative} - \text{positive})}{(\text{negative})} = \frac{m(\text{negative})}{(\text{negative})} > 0. Both roots are positive.

Consider f3=m(2a1+14a)2af_3 = \frac{m(2a-1 + \sqrt{1-4a})}{2a}. We need f3<1f_3 < 1. m(2a1+14a)>2am(2a-1 + \sqrt{1-4a}) > 2a (since 2a2a is negative, multiplying by 2a2a reverses the inequality). m>2a2a1+14am > \frac{2a}{2a-1 + \sqrt{1-4a}}. Let C(a)=2a2a1+14aC_-(a) = \frac{2a}{2a-1 + \sqrt{1-4a}}. For a given a<0a < 0, solutions x=n+f3=m+f3x=n+f_3 = -m+f_3 exist for integers m1m \ge 1 such that m>C(a)m > C_-(a). The possible values for mm are M,M+1,M_-, M_-+1, \dots, where MM_- is the smallest integer such that M>C(a)M_- > C_-(a). This implies an infinite number of solutions for mm (and hence for xx), unless C(a)C_-(a) is not positive. C(a)=2a2a1+14aC_-(a) = \frac{2a}{2a-1 + \sqrt{1-4a}}. 2a<02a < 0. 2a1<02a-1 < 0. 14a>0\sqrt{1-4a} > 0. The denominator 2a1+14a2a-1 + \sqrt{1-4a} is negative as shown before. So C(a)=negativenegative>0C_-(a) = \frac{\text{negative}}{\text{negative}} > 0. Thus m>C(a)>0m > C_-(a) > 0. This implies an infinite number of possible integer values for mm. The sum of solutions would be infinite. This contradicts the given sum of 420. So there are no solutions with a<0a < 0.

This leaves a(0,1/4)a \in (0, 1/4). The only solutions are x=0x=0 and xn=n114a2ax_n = n \frac{1 - \sqrt{1-4a}}{2a} for n=1,2,,N+n=1, 2, \dots, N_+, where N+=C+(a)ϵN_+ = \lfloor C_+(a) - \epsilon \rfloor. The sum of all real numbers satisfying the equation is the sum of x=0x=0 and the solutions xnx_n. Sum =0+S+=114a2aN+(N++1)2= 0 + S_+ = \frac{1 - \sqrt{1-4a}}{2a} \frac{N_+(N_+ + 1)}{2}. We are given this sum is 420. 114a2aN+(N++1)2=420\frac{1 - \sqrt{1-4a}}{2a} \frac{N_+(N_+ + 1)}{2} = 420.

Let K=114a2aK = \frac{1 - \sqrt{1-4a}}{2a}. Note that K>0K > 0 for a(0,1/4)a \in (0, 1/4).

The sum is KN+(N++1)2=420K \frac{N_+(N_++1)}{2} = 420.

The solutions for x>0x>0 are xn=nK=n3029x_n = nK = n \frac{30}{29} for n=1,2,,28n=1, 2, \dots, 28. The sum is n=128n3029=3029n=128n=302928×292=30×14=420\sum_{n=1}^{28} n \frac{30}{29} = \frac{30}{29} \sum_{n=1}^{28} n = \frac{30}{29} \frac{28 \times 29}{2} = 30 \times 14 = 420. The solution x=0x=0 is also included in the set of solutions. The sum of all solutions is 420+0=420420+0=420.

So a=29900a = \frac{29}{900} is the correct value.