Solveeit Logo

Question

Question: xv) $\frac{1+\cot \theta+\csc \theta}{1-\cot \theta+\csc \theta}=\frac{\csc \theta+\cot \theta-1}{\c...

xv) 1+cotθ+cscθ1cotθ+cscθ=cscθ+cotθ1cotθcscθ+1\frac{1+\cot \theta+\csc \theta}{1-\cot \theta+\csc \theta}=\frac{\csc \theta+\cot \theta-1}{\cot \theta-\csc \theta+1}

Answer

The given equation is an identity; it holds true for all θ\theta satisfying:

sinθ0,sinθcosθ+10,sinθ+cosθ10.\sin\theta\neq 0,\quad \sin\theta-\cos\theta+1\neq 0,\quad \sin\theta+\cos\theta-1\neq 0.
Explanation

Solution

Replace cotθ\cot\theta and cscθ\csc\theta by their expressions in terms of sinθ\sin\theta and cosθ\cos\theta; simplify both sides; the equation reduces to an identity 2sinθcosθ=2sinθcosθ2\sin\theta\cos\theta=2\sin\theta\cos\theta with conditions that the denominators are nonzero.