Solveeit Logo

Question

Question: \(x^{n}\)=...

xnx^{n}=

A

A=BA = B

B

A=2BA = 2B

C

2A=B2A = B

D

None of these

Answer

A=BA = B

Explanation

Solution

n!n!n!\frac{n!}{n!n!} …..(i)

(2n)!n!n!\frac{(2n)!}{n!n!} …..(ii)

Multiplying both sides and equating coefficient of (2n)!n!\frac{(2n)!}{n!}in (1+x)n=C0+C1x+C2x2+..........+Cnxn(1 + x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + .......... + C_{n}x^{n}or the coefficient of C1C0+2C2C1+3C3C2+....+nCnCn1=\frac{C_{1}}{C_{0}} + \frac{2C_{2}}{C_{1}} + \frac{3C_{3}}{C_{2}} + .... + \frac{nC_{n}}{C_{n - 1}} =in n(n1)2\frac{n(n - 1)}{2} we get the value of required expression = n(n+2)2\frac{n(n + 2)}{2}

Trick : Solving conversely.

Put C1+2C2+3C3+4C4+....+nCn=C_{1} + 2C_{2} + 3C_{3} + 4C_{4} + .... + nC_{n} = and 2n2^{n} in first term , (given condition)

(i) n.2n+1n.2^{n + 1} , C01+C23+C45+C67+....\frac{C_{0}}{1} + \frac{C_{2}}{3} + \frac{C_{4}}{5} + \frac{C_{6}}{7} + ....

Put 2n+1n+1\frac{2^{n + 1}}{n + 1}, then

(ii) 2n+11n+1\frac{2^{n + 1} - 1}{n + 1}

Now check the options

(1) (i) Put 2nn+1\frac{2^{n}}{n + 1}, we get C01+C12+C23+....+Cnn+1=\frac{C_{0}}{1} + \frac{C_{1}}{2} + \frac{C_{2}}{3} + .... + \frac{C_{n}}{n + 1} =

(ii) Put 2nn+1\frac{2^{n}}{n + 1}, we get 2n1n+1\frac{2^{n} - 1}{n + 1}

Note : Students should remember this question as an identity.