Solveeit Logo

Question

Question: $x^{\log_a 5} = \frac{1}{2}$ Taking log on both sides to the base 'k' $\log_a 5 \log_k x = \log_k...

xloga5=12x^{\log_a 5} = \frac{1}{2}

Taking log on both sides to the base 'k'

loga5logkx=logk(12)\log_a 5 \log_k x = \log_k (\frac{1}{2})

logk5logkalogkx=logk(12)\frac{\log_k 5}{\log_k a} \log_k x = \log_k (\frac{1}{2})

logkxlogka=logk(12)logk(5)\frac{\log_k x}{\log_k a} = \frac{\log_k (\frac{1}{2})}{\log_k (5)}

logax=log5(12)\log_a x = \log_5 (\frac{1}{2})

logax=log5(2)1\log_a x = \log_5 (2)^{-1}

logax=log52\log_a x = -\log_5 2

logax=log52\log_a x = -\log_5 2

x=a2log5ax = \frac{a}{2^{-\log_5 a}}

Is this correct?

Answer

The provided solution is incorrect. The correct solution is x=alog52x = a^{-\log_5 2} or equivalently x=2log5ax = 2^{-\log_5 a}.

Explanation

Solution

The derivation steps are correct up to logax=log52\log_a x = -\log_5 2.

To convert this to exponential form, we use the definition logby=z    y=bz\log_b y = z \iff y = b^z. Applying this, we get: x=alog52x = a^{-\log_5 2}

This can be rewritten using logarithm properties: x=alog52=2log5ax = a^{-\log_5 2} = 2^{-\log_5 a}

The user's final answer x=a2log5ax = \frac{a}{2^{-\log_5 a}} simplifies to x=a2log5ax = a \cdot 2^{\log_5 a}, which is incorrect.