Solveeit Logo

Question

Mathematics Question on Integration by Parts

xlog(1+x2)dx=∫xlog(1+x^2)dx=?

A

12(1+x2)log(2+x2)+x22+C\dfrac{1}{2}(1+x^2)log(2+x^2)+\dfrac{x^{2}}{2}+C

B

12(1+x2)log(1+x2)(1+x22)+C\dfrac{1}{2}(1+x^2)log(1+x^2)-(\dfrac{1+x^2}{2})+C

C

12(1+x2)log(2+x2)x22+C\dfrac{1}{2}(1+x^2)log(2+x^2)-\dfrac{x^{2}}{2}+C

D

(1+x2)log(1+x2)+(1+x2)+C(1+x^2)log(1+x^2)+(1+x^2)+C

E

(1x2)log(1+x2)+(1x2)+C(1-x^2)log(1+x^2)+(1-x^2)+C

Answer

12(1+x2)log(1+x2)(1+x22)+C\dfrac{1}{2}(1+x^2)log(1+x^2)-(\dfrac{1+x^2}{2})+C

Explanation

Solution

∫xlog(1+x^2)dx

To solve the question first multiply 22 \dfrac{2}{2} in the above expression,

Then we get

12×2xlog(1+x2)dx∫\dfrac{1}{2}×2xlog(1+x^2)dx

Now take ,(1+x2)=t (1+x^2)= t

Now, derivate both the sides with respect to xx ,

Therefore, we get

2xdx=dt2x dx= dt

substituting this expression in the main (given) expression we get

12(logtdt)\dfrac{1}{2}(∫logt dt)

=12(tlogtt)+C=\dfrac{1}{2} (tlogt-t)+C

=12(1+x2)(log(1+x2)1)=\dfrac{1}{2}(1+x^{2})(log(1+x^{2})-1)

=12(1+x2)log(1+x2)1+x22=\dfrac{1}{2}(1+x^{2})log(1+x^{2})-\dfrac{1+x^{2}}{2} (Ans)