Question
Mathematics Question on Integration by Parts
∫xlog(1+x2)dx=?
A
21(1+x2)log(2+x2)+2x2+C
B
21(1+x2)log(1+x2)−(21+x2)+C
C
21(1+x2)log(2+x2)−2x2+C
D
(1+x2)log(1+x2)+(1+x2)+C
E
(1−x2)log(1+x2)+(1−x2)+C
Answer
21(1+x2)log(1+x2)−(21+x2)+C
Explanation
Solution
∫xlog(1+x^2)dx
To solve the question first multiply 22 in the above expression,
Then we get
∫21×2xlog(1+x2)dx
Now take ,(1+x2)=t
Now, derivate both the sides with respect to x ,
Therefore, we get
2xdx=dt
substituting this expression in the main (given) expression we get
21(∫logtdt)
=21(tlogt−t)+C
=21(1+x2)(log(1+x2)−1)
=21(1+x2)log(1+x2)−21+x2 (Ans)