Question
Question: $x^7+3x^5-13x^3-15x=0$ and if $|\alpha_1| \ge |\alpha_2| \ge |\alpha_3| \ge |\alpha_4| \ge |\alpha_5...
x7+3x5−13x3−15x=0 and if ∣α1∣≥∣α2∣≥∣α3∣≥∣α4∣≥∣α5∣≥∣α6∣≥∣α7∣ then $(\alpha_1\alpha_2 - \alpha_3\alpha_4 + \alpha_5\alpha_6) = ?

Answer
9
Explanation
Solution
The roots of the polynomial x7+3x5−13x3−15x=0 are found by factoring and solving the resulting cubic equation in x2. The roots are 0,±3,±i,±i5. Their absolute values are 0,3,3,1,1,5,5. The condition ∣α1∣≥⋯≥∣α7∣ groups roots with equal absolute values. Thus, {α1,α2}={i5,−i5}, {α3,α4}={3,−3}, and {α5,α6}={i,−i}. Calculating the products α1α2=5, α3α4=−3, and α5α6=1, the desired expression is 5−(−3)+1=9.
