Solveeit Logo

Question

Question: $x^7+3x^5-13x^3-15x=0$ and if $|\alpha_1| \ge |\alpha_2| \ge |\alpha_3| \ge |\alpha_4| \ge |\alpha_5...

x7+3x513x315x=0x^7+3x^5-13x^3-15x=0 and if α1α2α3α4α5α6α7|\alpha_1| \ge |\alpha_2| \ge |\alpha_3| \ge |\alpha_4| \ge |\alpha_5| \ge |\alpha_6| \ge |\alpha_7| then $(\alpha_1\alpha_2 - \alpha_3\alpha_4 + \alpha_5\alpha_6) = ?

Answer

9

Explanation

Solution

The roots of the polynomial x7+3x513x315x=0x^7+3x^5-13x^3-15x=0 are found by factoring and solving the resulting cubic equation in x2x^2. The roots are 0,±3,±i,±i50, \pm\sqrt{3}, \pm i, \pm i\sqrt{5}. Their absolute values are 0,3,3,1,1,5,50, \sqrt{3}, \sqrt{3}, 1, 1, \sqrt{5}, \sqrt{5}. The condition α1α7|\alpha_1| \ge \dots \ge |\alpha_7| groups roots with equal absolute values. Thus, {α1,α2}={i5,i5}\{\alpha_1, \alpha_2\} = \{i\sqrt{5}, -i\sqrt{5}\}, {α3,α4}={3,3}\{\alpha_3, \alpha_4\} = \{\sqrt{3}, -\sqrt{3}\}, and {α5,α6}={i,i}\{\alpha_5, \alpha_6\} = \{i, -i\}. Calculating the products α1α2=5\alpha_1\alpha_2=5, α3α4=3\alpha_3\alpha_4=-3, and α5α6=1\alpha_5\alpha_6=1, the desired expression is 5(3)+1=95 - (-3) + 1 = 9.