Solveeit Logo

Question

Question: If $x^2 + y^2 = r^2$, then $\frac{|y_2|}{(1+y_1^2)^{3/2}} =$ Where $y_1 = \frac{dy}{dx}$ and $y_2 =...

If x2+y2=r2x^2 + y^2 = r^2, then y2(1+y12)3/2=\frac{|y_2|}{(1+y_1^2)^{3/2}} =

Where y1=dydxy_1 = \frac{dy}{dx} and y2=d2ydx2y_2 = \frac{d^2y}{dx^2}

A

r

B

1/r

C

1/r^2

D

r^2

Answer

1/r

Explanation

Solution

The expression y2(1+y12)3/2\frac{|y_2|}{(1+y_1^2)^{3/2}} represents the formula for the curvature of a curve. The given equation x2+y2=r2x^2+y^2=r^2 describes a circle of radius rr. The curvature of a circle is constant and equal to the reciprocal of its radius, which is 1/r1/r.

To verify this:

  1. Differentiate x2+y2=r2x^2 + y^2 = r^2 implicitly with respect to xx: 2x+2yy1=0    y1=xy2x + 2y y_1 = 0 \implies y_1 = -\frac{x}{y}.
  2. Differentiate y1y_1 with respect to xx to find y2y_2: y2=ddx(xy)=(1)(y)(x)(y1)y2=y+x(xy)y2=y2x2y3=x2+y2y3y_2 = \frac{d}{dx}\left(-\frac{x}{y}\right) = \frac{(-1)(y) - (-x)(y_1)}{y^2} = \frac{-y + x(-\frac{x}{y})}{y^2} = \frac{-y^2 - x^2}{y^3} = -\frac{x^2+y^2}{y^3}. Since x2+y2=r2x^2+y^2=r^2, we get y2=r2y3y_2 = -\frac{r^2}{y^3}.
  3. Calculate 1+y121+y_1^2: 1+y12=1+(xy)2=1+x2y2=y2+x2y2=r2y21+y_1^2 = 1 + \left(-\frac{x}{y}\right)^2 = 1 + \frac{x^2}{y^2} = \frac{y^2+x^2}{y^2} = \frac{r^2}{y^2}.
  4. Calculate (1+y12)3/2(1+y_1^2)^{3/2}: (1+y12)3/2=(r2y2)3/2=((ry)2)3/2=ry3=r3y3(1+y_1^2)^{3/2} = \left(\frac{r^2}{y^2}\right)^{3/2} = \left(\left(\frac{r}{y}\right)^2\right)^{3/2} = \left|\frac{r}{y}\right|^3 = \frac{r^3}{|y|^3} (since r>0r>0).
  5. Calculate y2|y_2|: y2=r2y3=r2y3|y_2| = \left|-\frac{r^2}{y^3}\right| = \frac{r^2}{|y|^3}.
  6. Substitute into the curvature formula: y2(1+y12)3/2=r2y3r3y3=r2r3=1r\frac{|y_2|}{(1+y_1^2)^{3/2}} = \frac{\frac{r^2}{|y|^3}}{\frac{r^3}{|y|^3}} = \frac{r^2}{r^3} = \frac{1}{r}.