Solveeit Logo

Question

Question: \[x^{2} = t\]...

x2=tx^{2} = t

A

x6tan1x36mudx\int_{}^{}{x^{6}\tan^{- 1}x^{3}}\mspace{6mu} dx

B

tan1(2x1x2)6mudx\int_{}^{}{\tan^{- 1}\left( \frac{2x}{1 - x^{2}} \right)\mspace{6mu} dx}

C

x3cosx26mudx\int_{}^{}{x^{3}\cos x^{2}\mspace{6mu} dx}

D

tanxsec2x1tan2x6mudx=\int_{}^{}{\tan x}\sec^{2}x\sqrt{1 - \tan^{2}x} ⥂ \mspace{6mu} dx =

Answer

tanxsec2x1tan2x6mudx=\int_{}^{}{\tan x}\sec^{2}x\sqrt{1 - \tan^{2}x} ⥂ \mspace{6mu} dx =

Explanation

Solution

1balog(acos2x+bsin2x)+c\frac{1}{b - a}\log(a\cos^{2}x + b\sin^{2}x) + c

=sec2xdx+tanxsecxdx= \int \sec ^ { 2 } x d x + \int \tan x \cdot \sec x d x etan1x1+x2dx=\int_{}^{}{\frac{e^{\tan^{- 1}x}}{1 + x^{2}}dx =}.