Solveeit Logo

Question

Question: *x*, *y*, *z* are distinct scalars such that \(\lbrack x\mathbf{a} + y\mathbf{b} + z\mathbf{c},x\ma...

x, y, z are distinct scalars such that

[xa+yb+zc,xb+yc+za,xc+ya+zb]=0\lbrack x\mathbf{a} + y\mathbf{b} + z\mathbf{c},x\mathbf{b} + y\mathbf{c} + z\mathbf{a},x\mathbf{c} + y\mathbf{a} + z\mathbf{b}\rbrack = 0 where a, b, c are non-coplanar vectors then

A

x+y+z=0x + y + z = 0

B

xy+yz+zx=0xy + yz + zx = 0

C

x3+y3+z3=0x^{3} + y^{3} + z^{3} = 0

D

x2+y2+z2=0x^{2} + y^{2} + z^{2} = 0

Answer

x+y+z=0x + y + z = 0

Explanation

Solution

a,b,c\mathbf{a},\mathbf{b},\mathbf{c} are non-coplanar

\therefore [abc]0\lbrack\mathbf{abc}\rbrack \neq 0

Now,[xa+yb+zc,xb+yc+za,xc+ya+zb]=0\lbrack x\mathbf{a} + y\mathbf{b} + z\mathbf{c},x\mathbf{b} + y\mathbf{c} + z\mathbf{a},x\mathbf{c} + y\mathbf{a} + z\mathbf{b}\rbrack = 0

(xa+yb+zc).{(xb+yc+za)×(xc+ya+zb)}=0(x\mathbf{a} + y\mathbf{b} + z\mathbf{c}).\{(x\mathbf{b} + y\mathbf{c} + z\mathbf{a}) \times (x\mathbf{c} + y\mathbf{a} + z\mathbf{b})\} = 0

(xa+yb+zc).{(x2yz)(b×c)+(z2xy)(a×b)+(y2zx)(c×a)}=0(x\mathbf{a} + y\mathbf{b} + z\mathbf{c}).\{(x^{2} - yz)(\mathbf{b} \times \mathbf{c}) + (z^{2} - xy)(\mathbf{a} \times \mathbf{b}) + (y^{2} - zx)(\mathbf{c} \times \mathbf{a})\} = 0

x(x2yz)[abc]+y(y2zx)[bca]+z(z2xy)[cab]=0x(x^{2} - yz)\lbrack\mathbf{abc}\rbrack + y(y^{2} - zx)\lbrack\mathbf{bca}\rbrack + z(z^{2} - xy)\lbrack\mathbf{cab}\rbrack = 0

(x3xyz)[abc]+(y3xyz)[abc]+(z3xyz)[abc]=0(x^{3} - xyz)\lbrack\mathbf{abc}\rbrack + (y^{3} - xyz)\lbrack\mathbf{abc}\rbrack + (z^{3} - xyz)\lbrack\mathbf{abc}\rbrack = 0

As [abc]0\lbrack\mathbf{abc}\rbrack \neq 0, x3+y3+z33xyz=0x^{3} + y^{3} + z^{3} - 3xyz = 0

(x+y+z)(x2+y2+z2xyyzzx)=0(x + y + z)(x^{2} + y^{2} + z^{2} - xy - yz - zx) = 0

12(x+y+z){(xy)2+(yz)2+(zx)2}=0\frac{1}{2}(x + y + z)\{(x - y)^{2} + (y - z)^{2} + (z - x)^{2}\} = 0

x+y+z=0x + y + z = 0 or x=y=zx = y = z

But x, y, z are distinct. \therefore x+y+z=0x + y + z = 0