Question
Question: *x*, *y*, *z* are distinct scalars such that \(\lbrack x\mathbf{a} + y\mathbf{b} + z\mathbf{c},x\ma...
x, y, z are distinct scalars such that
[xa+yb+zc,xb+yc+za,xc+ya+zb]=0 where a, b, c are non-coplanar vectors then
A
x+y+z=0
B
xy+yz+zx=0
C
x3+y3+z3=0
D
x2+y2+z2=0
Answer
x+y+z=0
Explanation
Solution
a,b,c are non-coplanar
∴ [abc]=0
Now,[xa+yb+zc,xb+yc+za,xc+ya+zb]=0
⇒(xa+yb+zc).{(xb+yc+za)×(xc+ya+zb)}=0
⇒(xa+yb+zc).{(x2−yz)(b×c)+(z2−xy)(a×b)+(y2−zx)(c×a)}=0
⇒x(x2−yz)[abc]+y(y2−zx)[bca]+z(z2−xy)[cab]=0
⇒(x3−xyz)[abc]+(y3−xyz)[abc]+(z3−xyz)[abc]=0
As [abc]=0, x3+y3+z3−3xyz=0
⇒(x+y+z)(x2+y2+z2−xy−yz−zx)=0
⇒ 21(x+y+z){(x−y)2+(y−z)2+(z−x)2}=0
⇒ x+y+z=0 or x=y=z
But x, y, z are distinct. ∴ x+y+z=0