Solveeit Logo

Question

Question: √(x-x^2) dx...

√(x-x^2) dx

Answer

2x14xx2+18sin1(2x1)+C\frac{2x - 1}{4}\sqrt{x - x^2} + \frac{1}{8}\sin^{-1}(2x - 1) + C

Explanation

Solution

To evaluate the integral xx2dx\int \sqrt{x-x^2} dx, we first complete the square for the quadratic expression inside the square root.

  1. Complete the square: The expression is xx2x - x^2. We can rewrite this as (x2x)-(x^2 - x). To complete the square for x2xx^2 - x, we add and subtract (12)2=14(\frac{-1}{2})^2 = \frac{1}{4}. So, x2x=(x2x+14)14=(x12)214x^2 - x = (x^2 - x + \frac{1}{4}) - \frac{1}{4} = (x - \frac{1}{2})^2 - \frac{1}{4}. Therefore, xx2=[(x12)214]=14(x12)2x - x^2 = -[(x - \frac{1}{2})^2 - \frac{1}{4}] = \frac{1}{4} - (x - \frac{1}{2})^2.

  2. Substitute to a standard form: Let u=x12u = x - \frac{1}{2}. Then du=dxdu = dx. The integral becomes: 14u2du\int \sqrt{\frac{1}{4} - u^2} du This is in the standard form a2u2du\int \sqrt{a^2 - u^2} du, where a2=14a^2 = \frac{1}{4}, so a=12a = \frac{1}{2}.

  3. Apply the standard integration formula: The formula for a2x2dx\int \sqrt{a^2 - x^2} dx is x2a2x2+a22sin1(xa)+C\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\left(\frac{x}{a}\right) + C. Applying this with uu instead of xx and a=12a = \frac{1}{2}: 14u2du=u214u2+(12)22sin1(u12)+C\int \sqrt{\frac{1}{4} - u^2} du = \frac{u}{2}\sqrt{\frac{1}{4} - u^2} + \frac{\left(\frac{1}{2}\right)^2}{2}\sin^{-1}\left(\frac{u}{\frac{1}{2}}\right) + C =u214u2+142sin1(2u)+C= \frac{u}{2}\sqrt{\frac{1}{4} - u^2} + \frac{\frac{1}{4}}{2}\sin^{-1}(2u) + C =u214u2+18sin1(2u)+C= \frac{u}{2}\sqrt{\frac{1}{4} - u^2} + \frac{1}{8}\sin^{-1}(2u) + C

  4. Substitute back to the original variable: Now substitute u=x12u = x - \frac{1}{2} back into the expression: x12214(x12)2+18sin1(2(x12))+C\frac{x - \frac{1}{2}}{2}\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^2} + \frac{1}{8}\sin^{-1}\left(2\left(x - \frac{1}{2}\right)\right) + C

  5. Simplify the expression:

    • x122=2x14\frac{x - \frac{1}{2}}{2} = \frac{2x - 1}{4}
    • 14(x12)2=14(x2x+14)=14x2+x14=xx2\sqrt{\frac{1}{4} - \left(x - \frac{1}{2}\right)^2} = \sqrt{\frac{1}{4} - (x^2 - x + \frac{1}{4})} = \sqrt{\frac{1}{4} - x^2 + x - \frac{1}{4}} = \sqrt{x - x^2}
    • 2(x12)=2x12\left(x - \frac{1}{2}\right) = 2x - 1

    Substituting these simplified terms back, we get: 2x14xx2+18sin1(2x1)+C\frac{2x - 1}{4}\sqrt{x - x^2} + \frac{1}{8}\sin^{-1}(2x - 1) + C

The integral xx2dx\int \sqrt{x-x^2} dx is solved by first completing the square of the quadratic expression xx2x-x^2 to transform it into the form 14(x12)2\frac{1}{4} - (x-\frac{1}{2})^2. A substitution u=x12u = x-\frac{1}{2} converts the integral into the standard form a2u2du\int \sqrt{a^2-u^2}du, where a=12a=\frac{1}{2}. Using the known integration formula a2x2dx=x2a2x2+a22sin1(xa)+C\int \sqrt{a^2-x^2}dx = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}(\frac{x}{a}) + C, and substituting back u=x12u=x-\frac{1}{2}, leads to the final result.