Solveeit Logo

Question

Question: x tends 0 to \(\pi\) then the given function \(f(x) = x\sin x + \cos x + \cos^{2}x\) is...

x tends 0 to π\pi then the given function

f(x)=xsinx+cosx+cos2xf(x) = x\sin x + \cos x + \cos^{2}x is

A

Increasing

B

Decreasing

C

Neither increasing nor decreasing

D

None of these

Answer

Decreasing

Explanation

Solution

f(x)=xsinx+cosx+cos2xf(x) = x\sin x + \cos x + \cos^{2}x\therefore f(x)=sinx+xcosxsinx2cosxsinxf^{'}(x) = \sin x + x\cos x - \sin x - 2\cos x\sin x = cosx(x2sinx)\cos x(x - 2\sin x)

Hence x0x \rightarrow 0 to π\pi, then f(x)0f^{'}(x) \leq 0, i.e., f(x)f(x) is decreasing function.