Question
Mathematics Question on Continuity and differentiability
x1+y+y1+x=0, for -1<x<1,prove that dxdy=-$$\frac{1}{(1+x)^2}
Answer
It is given that
x1+y+y1+x=0
⇒ x1+y=−y1+x
squaring both sides, we obtain x2(1+y)=y2(1+x)
⇒ x2+x2y=y2+xy2
⇒ x2-y2=xy2-x2y
⇒ x2-y2=xy(y-x)
⇒ (x+y)(x-y)=xy(y-x)
∴x+y=-xy
⇒ (1+x)y=-x
⇒ y=-x/(1+x)
Differentiating both sides with respect to x, we obtain
dxdy=(1+x)dxd(x)−xdxd(1+x)2(1+x)=−(1+x)−(1+x)2x
=−(1+x)21
Hence, it proved.