Solveeit Logo

Question

Quantitative Aptitude Question on Logarithms

X is a +ve real no, 4 log10 (x) + 4log 100 (x) + 8 log1000 (x) = 13, then the greatest integer not exceeding 'x'

Answer

We are solving the equation:
4log10x+4log100x+8log1000x=13.4 \log_{10} x + 4 \log_{100} x + 8 \log_{1000} x = 13.
Step 1: Rewrite the logs in base 10
Using the properties of logarithms:
log100x=log10xlog10100=log10x2=12log10x,\log_{100} x = \frac{\log_{10} x}{\log_{10} 100} = \frac{\log_{10} x}{2} = \frac{1}{2} \log_{10} x,
log1000x=log10xlog101000=log10x3=13log10x.\log_{1000} x = \frac{\log_{10} x}{\log_{10} 1000} = \frac{\log_{10} x}{3} = \frac{1}{3} \log_{10} x.
Substitute these into the equation:
4log10x+4×12log10x+8×13log10x=13.4 \log_{10} x + 4 \times \frac{1}{2} \log_{10} x + 8 \times \frac{1}{3} \log_{10} x = 13.
Step 2: Simplify the terms
Simplify each term:
4log10x+2log10x+83log10x=13.4 \log_{10} x + 2 \log_{10} x + \frac{8}{3} \log_{10} x = 13.
Combine the coefficients:
(4+2+83)log10x=13.\left( 4 + 2 + \frac{8}{3} \right) \log_{10} x = 13.
Find the sum of the coefficients:
4+2+83=123+63+83=263.4 + 2 + \frac{8}{3} = \frac{12}{3} + \frac{6}{3} + \frac{8}{3} = \frac{26}{3}.
Thus:
263log10x=13.\frac{26}{3} \log_{10} x = 13.
Step 3: Solve for log10x\log_{10} x
Multiply through by 326\frac{3}{26}:
log10x=13×326=3926=32.\log_{10} x = 13 \times \frac{3}{26} = \frac{39}{26} = \frac{3}{2}.
Step 4: Solve for xx
From log10x=32\log_{10} x = \frac{3}{2}, rewrite in exponential form:
x=1032=103=1000.x = 10^{\frac{3}{2}} = \sqrt{10^3} = \sqrt{1000}.
Simplify:
x=31.622.x = 31.622.
Step 5: Greatest integer not exceeding xx
The greatest integer not exceeding x=31.622x = 31.622 is:
31.\boxed{31}.