Solveeit Logo

Question

Question: \[x + 4\log(1 - x) + c\]...

x+4log(1x)+cx + 4\log(1 - x) + c

A

x+4log(x1)+cx + 4\log(x - 1) + c

B

dx4cos32x3cos2x=\int_{}^{}\frac{dx}{4\cos^{3}2x - 3\cos 2x} =

C

13log[sec6x+tan6x]+c\frac{1}{3}\log\lbrack\sec 6x + \tan 6x\rbrack + c

D

None of these

Answer

13log[sec6x+tan6x]+c\frac{1}{3}\log\lbrack\sec 6x + \tan 6x\rbrack + c

Explanation

Solution

sinx23sin3x15sin5x+c\sin x - \frac{2}{3}\sin^{3}x - \frac{1}{5}\sin^{5}x + c

secxtan3x6mudx=\int_{}^{}{\sec x\tan^{3}x\mspace{6mu} dx =}

13sec3xsecx+c\frac{1}{3}\sec^{3}x - \sec x + c.