Question
Question: $(x + 2)(x + 4)(x + 6)(x + 12) + 4x^2 = 0$...
(x+2)(x+4)(x+6)(x+12)+4x2=0

x = -6 \pm 2\sqrt{3}
Solution
To solve the equation (x+2)(x+4)(x+6)(x+12)+4x2=0, we strategically group the terms.
Notice that the product of the constants in one pair, 2×12=24, is equal to the product of the constants in another pair, 4×6=24.
Rearrange the terms: [(x+2)(x+12)][(x+4)(x+6)]+4x2=0
Expand each pair: (x+2)(x+12)=x2+12x+2x+24=x2+14x+24 (x+4)(x+6)=x2+6x+4x+24=x2+10x+24
Substitute these back into the equation: (x2+14x+24)(x2+10x+24)+4x2=0
Let y=x2+24. The equation becomes: (y+14x)(y+10x)+4x2=0
Expand the product: y2+10xy+14xy+140x2+4x2=0 y2+24xy+144x2=0
This expression is a perfect square trinomial: y2+2(y)(12x)+(12x)2=0 (y+12x)2=0
Substitute back y=x2+24: (x2+24+12x)2=0 (x2+12x+24)2=0
For this equation to hold, the term inside the parenthesis must be zero: x2+12x+24=0
Now, solve this quadratic equation using the quadratic formula x=2a−b±b2−4ac. Here, a=1, b=12, c=24.
x=2⋅1−12±122−4⋅1⋅24 x=2−12±144−96 x=2−12±48
Simplify 48: 48=16×3=43
Substitute this value back: x=2−12±43 x=22(−6±23) x=−6±23
The solutions are x=−6+23 and x=−6−23.