Solveeit Logo

Question

Question: $(x + 2)(x + 4)(x + 6)(x + 12) + 4x^2 = 0$...

(x+2)(x+4)(x+6)(x+12)+4x2=0(x + 2)(x + 4)(x + 6)(x + 12) + 4x^2 = 0

Answer

x = -6 \pm 2\sqrt{3}

Explanation

Solution

To solve the equation (x+2)(x+4)(x+6)(x+12)+4x2=0(x + 2)(x + 4)(x + 6)(x + 12) + 4x^2 = 0, we strategically group the terms.

Notice that the product of the constants in one pair, 2×12=242 \times 12 = 24, is equal to the product of the constants in another pair, 4×6=244 \times 6 = 24.

Rearrange the terms: [(x+2)(x+12)][(x+4)(x+6)]+4x2=0[(x + 2)(x + 12)][(x + 4)(x + 6)] + 4x^2 = 0

Expand each pair: (x+2)(x+12)=x2+12x+2x+24=x2+14x+24(x + 2)(x + 12) = x^2 + 12x + 2x + 24 = x^2 + 14x + 24 (x+4)(x+6)=x2+6x+4x+24=x2+10x+24(x + 4)(x + 6) = x^2 + 6x + 4x + 24 = x^2 + 10x + 24

Substitute these back into the equation: (x2+14x+24)(x2+10x+24)+4x2=0(x^2 + 14x + 24)(x^2 + 10x + 24) + 4x^2 = 0

Let y=x2+24y = x^2 + 24. The equation becomes: (y+14x)(y+10x)+4x2=0(y + 14x)(y + 10x) + 4x^2 = 0

Expand the product: y2+10xy+14xy+140x2+4x2=0y^2 + 10xy + 14xy + 140x^2 + 4x^2 = 0 y2+24xy+144x2=0y^2 + 24xy + 144x^2 = 0

This expression is a perfect square trinomial: y2+2(y)(12x)+(12x)2=0y^2 + 2(y)(12x) + (12x)^2 = 0 (y+12x)2=0(y + 12x)^2 = 0

Substitute back y=x2+24y = x^2 + 24: (x2+24+12x)2=0(x^2 + 24 + 12x)^2 = 0 (x2+12x+24)2=0(x^2 + 12x + 24)^2 = 0

For this equation to hold, the term inside the parenthesis must be zero: x2+12x+24=0x^2 + 12x + 24 = 0

Now, solve this quadratic equation using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Here, a=1a=1, b=12b=12, c=24c=24.

x=12±122412421x = \frac{-12 \pm \sqrt{12^2 - 4 \cdot 1 \cdot 24}}{2 \cdot 1} x=12±144962x = \frac{-12 \pm \sqrt{144 - 96}}{2} x=12±482x = \frac{-12 \pm \sqrt{48}}{2}

Simplify 48\sqrt{48}: 48=16×3=43\sqrt{48} = \sqrt{16 \times 3} = 4\sqrt{3}

Substitute this value back: x=12±432x = \frac{-12 \pm 4\sqrt{3}}{2} x=2(6±23)2x = \frac{2(-6 \pm 2\sqrt{3})}{2} x=6±23x = -6 \pm 2\sqrt{3}

The solutions are x=6+23x = -6 + 2\sqrt{3} and x=623x = -6 - 2\sqrt{3}.