Solveeit Logo

Question

Mathematics Question on integral

x2ex3dx∫x^2e^{x^3}dx equals

A

13ex3+C\frac{1}{3}e^{x^3}+C

B

13ex2+C\frac{1}{3}e^{x^2}+C

C

12ex3+C\frac{1}{2}e^{x^3}+C

D

13ex2+C\frac{1}{3}e^{x^2}+C

Answer

13ex3+C\frac{1}{3}e^{x^3}+C

Explanation

Solution

The correct answer is A:=13ex3+C=\frac{1}{3}e^{x^3}+C
Let I=x2ex3dxI=∫x^2e^{x^3}dx
Also,let x3=t3x2dx=dtx^3=t\,\,3x^2dx=dt
I=13etdt⇒I=\frac{1}{3}∫e^tdt
=13(et)+C=\frac{1}{3}(e^t)+C
=13ex3+C=\frac{1}{3}e^{x^3}+C
Hence,the correct answer is A.