Solveeit Logo

Question

Mathematics Question on Conic sections

x2+y26x6y+4=0,x2+y22x4y+30,x2+y2+2kx+2y+1=0x^2 + y^2 -6x-6y + 4 = 0, x^2 + y^2 - 2x - 4y + 3 - 0 , x^2 + y^2 + 2k x + 2y +1 = 0. If the Radical centre of the above three circles exists, then which of the following cannot be the value of kk ?

A

1

B

2

C

4

D

5

Answer

5

Explanation

Solution

Given, equation of circles are
S1=x2+y26x6y+4=0S_1 = x^2 + y^2 - 6 x - 6 y + 4 = 0
S2=x2+y22x?4y+3=0S_2 = x^2 + y^2- 2 x ? 4 y + 3 = 0
and S3=x2+y2+2kx+2y+1=0S_3 = x^2 + y^2 + 2kx + 2y + 1 = 0
Now, radical axis of circle S1S_1 and S2S_2 is
S1?S2=0S_1 ? S_2 = 0
x2+y26x6y+4x2y2+2x\Rightarrow \, x^2 + y^2 - 6x - 6y + 4 - x^2- y^2+ 2 x
4x2y+1=0\Rightarrow \, - 4 x - 2 y + 1 = 0
4x+2y+l=0(i)\Rightarrow \, 4 x + 2 y + l = 0\,\,\,\,\,\dots(i)
Radical axis of circle S2S_2 and S3S_3 is
S2?S3=0S_2 ? S_3 = 0
x2+y22x4y+3x2y22kx\Rightarrow\, x^2 + y^2- 2 x - 4 y + 3 x^2 - y^2 - 2kx
(2+2k)x6y+2=0\Rightarrow \, - (2 + 2k) x - 6y + 2 = 0
(2+2k)x+6y2=0(ii)\Rightarrow \, (2 + 2k) x + 6 y - 2 = 0\,\,\,\,\,\dots(ii)
For existence of radical centre
42 2+2k60\begin{vmatrix}4&2\\\ 2+2k&6\end{vmatrix} \ne 0
242(2+2k)0\Rightarrow \, 24 - 2 (2 + 2k) \ne 0
2444k0\Rightarrow\, 2 4 - 4 - 4 k \ne 0
204k0\Rightarrow \, 20 - 4 k \ne 0
k5\Rightarrow \, k \ne 5