Solveeit Logo

Question

Mathematics Question on Differential equations

(x2+xy)dy=(x2+y2)dx (x^2 + xy) dy = (x^2 + y^2) dx is

A

logx=log(xy)+yx+C\log x = \log (x - y) +\frac{y}{x} + C

B

logx=2log(xy)+yx+C\log x = 2 \log (x - y) +\frac{y}{x} + C

C

logx=log(xy)+xy+C\log x = \log (x - y) +\frac{x}{y} + C

D

none of these

Answer

logx=2log(xy)+yx+C\log x = 2 \log (x - y) +\frac{y}{x} + C

Explanation

Solution

dydx=x2+y2x2+xy\frac{dy}{dx} = \frac{x^{2}+y^{2}}{x^{2}+xy} . Put y=vxy = vx v+xdvdx=1+v21+v\Rightarrow v+x \frac{dv}{dx} = \frac{1+v^{2}}{1+v} xdvdx=1+v21+vv=1v1+v\Rightarrow x \frac{dv}{dx} = \frac{1+v^{2}}{1+v}-v=\frac{1-v}{1+v} 1+v1vdv=dxx\therefore \frac{1+v}{1-v}dv = \frac{dx}{x} (1+21v)dv=dxx\Rightarrow \left(-1+\frac{2}{1-v}\right)dv = \frac{dx}{x} v2log(1v)+C=logx\Rightarrow -v - 2\, log \left(1 - v\right) + C = log\, x yx2log(1yx)+C=logx\Rightarrow -\frac {y}{x} -2 log (1-\frac {y}{x})+C = logx yx2log+yx+2log(xyx)=0\Rightarrow -\frac{y}{x} -2 \,log +\frac{y}{x}+2\,log\left(\frac{x-y}{x}\right) = 0 yx+2log(xy)+C=logx\frac{y}{x}+2\,log\left(x-y\right)+C= log \,x