Solveeit Logo

Question

Mathematics Question on Vector Algebra

Write two different vectors having the same direction.

Answer

Consider p=(i^+j^+k^)\overrightarrow p=(\hat i+\hat j+\hat k) and q=(2i^+2j^+2k^)\overrightarrow q=(2\hat i+2\hat j+2\hat k).

The direction cosines of p\overrightarrow p are given by,

I=112+12+12=13I=\frac{1}{\sqrt{1^2+1^2+1^2}}=\frac{1}{\sqrt 3}, m=112+12+12=13m=\frac{1}{\sqrt{1^2+1^2+1^2}}=\frac{1}{\sqrt 3}, and n=112+12+12=13n=\frac{1}{\sqrt{1^2+1^2+1^2}}=\frac{1}{\sqrt 3}.

The direction cosines of q\overrightarrow q are given by

I=222+22+22=22313I=\frac{2}{\sqrt{2^2+2^2+2^2}}=\frac{2}{2\sqrt3}\frac{1}{\sqrt 3}, m=222+22+22=22313m=\frac{2}{\sqrt{2^2+2^2+2^2}}=\frac{2}{2\sqrt3}\frac{1}{\sqrt 3}, and n=222+22+22=22313n=\frac{2}{\sqrt{2^2+2^2+2^2}}=\frac{2}{2\sqrt3}\frac{1}{\sqrt 3}.

The direction cosines of p\overrightarrow p and q\overrightarrow q are the same. Hence, the two vectors have the same direction.