Solveeit Logo

Question

Question: Write the value of the given inverse trigonometric expression \({{\tan }^{-1}}\left( \tan \dfrac{3\p...

Write the value of the given inverse trigonometric expression tan1(tan3π4){{\tan }^{-1}}\left( \tan \dfrac{3\pi }{4} \right).

Explanation

Solution

Hint: For solving this question first, we will go through some important aspects like domain and range of the inverse trigonometric function y=tan1xy={{\tan }^{-1}}x . First, we will use one of the basic formulas of the trigonometric ratio to write tan3π4=1\tan \dfrac{3\pi }{4}=-1 in the given term. After that, we will use one of the basic formula of inverse trigonometric functions, i.e. tan1(1)=π4{{\tan }^{-1}}\left( -1 \right)=-\dfrac{\pi }{4} for giving the final answer for the question correctly.

Complete step-by-step solution -
Given:
We have to find the value of the following term:
tan1(tan3π4){{\tan }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)
Now, before we proceed we should know about the inverse trigonometric function y=tan1xy={{\tan }^{-1}}x . For more clarity look at the figure given below:

In the above figure, the plot y=f(x)=tan1xy=f\left( x \right)={{\tan }^{-1}}x is shown. And we should know that the function y=tan1xy={{\tan }^{-1}}x is defined for x(,)x\in \left( -\infty ,\infty \right) and its range is y(π2,π2)y\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) .
Now, we will use the above concept for giving the correct value of tan1(tan3π4){{\tan }^{-1}}\left( \tan \dfrac{3\pi }{4} \right) .
Now, before we proceed further we should know the following formulas:
tan3π4=1..................(1) tan1(1)=π4...........(2) \begin{aligned} & \tan \dfrac{3\pi }{4}=-1..................\left( 1 \right) \\\ & {{\tan }^{-1}}\left( -1 \right)=-\dfrac{\pi }{4}...........\left( 2 \right) \\\ \end{aligned}
Now, we will use the above two formulas to solve this question.
We have, tan1(tan3π4){{\tan }^{-1}}\left( \tan \dfrac{3\pi }{4} \right) .
Now, we will use the formula from the equation (1) to write tan3π4=1\tan \dfrac{3\pi }{4}=-1 in the term tan1(tan3π4){{\tan }^{-1}}\left( \tan \dfrac{3\pi }{4} \right) . Then,
tan1(tan3π4) tan1(1) \begin{aligned} & {{\tan }^{-1}}\left( \tan \dfrac{3\pi }{4} \right) \\\ & \Rightarrow {{\tan }^{-1}}\left( -1 \right) \\\ \end{aligned}
Now, we will use the formula from the equation (2) to write tan1(1)=π4{{\tan }^{-1}}\left( -1 \right)=-\dfrac{\pi }{4} in the above line. Then,
tan1(1) π4 \begin{aligned} & {{\tan }^{-1}}\left( -1 \right) \\\ & \Rightarrow -\dfrac{\pi }{4} \\\ \end{aligned}
Now, from the above result, we conclude that the value of the expression tan1(tan3π4){{\tan }^{-1}}\left( \tan \dfrac{3\pi }{4} \right) will be equal to π4-\dfrac{\pi }{4} . Then,
tan1(tan3π4)=π4{{\tan }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)=-\dfrac{\pi }{4}
Now, as it is evident that π4-\dfrac{\pi }{4} lies in the range of the function y=tan1xy={{\tan }^{-1}}x so, value of tan1(tan3π4)=π4{{\tan }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)=-\dfrac{\pi }{4} .
Thus, tan1(tan3π4)=π4{{\tan }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)=-\dfrac{\pi }{4}.

Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. Moreover, we should avoid writing tan1(tan3π4)=3π4{{\tan }^{-1}}\left( \tan \dfrac{3\pi }{4} \right)=\dfrac{3\pi }{4} directly and use the basic concepts of domain and range of the inverse trigonometric function y=tan1xy={{\tan }^{-1}}x correctly. And after giving the final answer, we should check for the validity of our answer by checking whether it lies in the range of the function y=tan1xy={{\tan }^{-1}}x.